Efficiency of high order numerical schemes for momentum advection

2007 ◽  
Vol 67 (1-2) ◽  
pp. 31-46 ◽  
Author(s):  
Nina G. Winther ◽  
Yves G. Morel ◽  
Geir Evensen
Keyword(s):  
2017 ◽  
Author(s):  
Sergey Mikhaylov ◽  
Alexander Morozov ◽  
Vladimir Podaruev ◽  
Alexey Troshin

2019 ◽  
Vol 29 ◽  
pp. 01007
Author(s):  
Derrick Jones ◽  
Xu Zhang

We present a high order immersed finite element (IFE) method for solving 1D parabolic interface problems. These methods allow the solution mesh to be independent of the interface. Time marching schemes including Backward-Eulerand Crank-Nicolson methods are implemented to fully discretize the system. Numerical examples are provided to test the performance of our numerical schemes.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 200 ◽  
Author(s):  
He Yang

The Klein-Gordon equation is a model for free particle wave function in relativistic quantum mechanics. Many numerical methods have been proposed to solve the Klein-Gordon equation. However, efficient high-order numerical methods that preserve energy and linear momentum of the equation have not been considered. In this paper, we propose high-order numerical methods to solve the Klein-Gordon equation, present the energy and linear momentum conservation properties of our numerical schemes, and show the optimal error estimates and superconvergence property. We also verify the performance of our numerical schemes by some numerical examples.


2005 ◽  
Vol 13 (04) ◽  
pp. 613-639 ◽  
Author(s):  
EVANGELIA T. FLOURI ◽  
JOHN A. EKATERINARIS ◽  
NIKOLAOS A. KAMPANIS

Efficient, high-order accurate methods for the numerical solution of the standard (narrow-angle) parabolic equation for underwater sound propagation are developed. Explicit and implicit numerical schemes, which are second- or higher-order accurate in time-like marching and fourth-order accurate in the space-like direction are presented. The explicit schemes have severe stability limitations and some of the proposed high-order accurate implicit methods were found conditionally stable. The efficiency and accuracy of various numerical methods are evaluated for Cartesian-type meshes. The standard parabolic equation is transformed to body fitted curvilinear coordinates. An unconditionally stable, implicit finite-difference scheme is used for numerical solutions in complex domains with deformed meshes. Simple boundary conditions are used and the accuracy of the numerical solutions is evaluated by comparing with an exact solution. Numerical solutions in complex domains obtained with a finite element method show excellent agreement with results obtained with the proposed finite difference methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-30
Author(s):  
A. R. Appadu

The numerical simulation of aeroacoustic phenomena requires high-order accurate numerical schemes with low dispersion and low dissipation errors. A technique has recently been devised in a Computational Fluid Dynamics framework which enables optimal parameters to be chosen so as to better control the grade and balance of dispersion and dissipation in numerical schemes (Appadu and Dauhoo, 2011; Appadu, 2012a; Appadu, 2012b; Appadu, 2012c). This technique has been baptised as the Minimized Integrated Exponential Error for Low Dispersion and Low Dissipation (MIEELDLD) and has successfully been applied to numerical schemes discretising the 1-D, 2-D, and 3-D advection equations. In this paper, we extend the technique of MIEELDLD to the field of computational aeroacoustics and have been able to construct high-order methods with Low Dispersion and Low Dissipation properties which approximate the 1-D linear advection equation. Modifications to the spatial discretization schemes designed by Tam and Webb (1993), Lockard et al. (1995), Zingg et al. (1996), Zhuang and Chen (2002), and Bogey and Bailly (2004) have been obtained, and also a modification to the temporal scheme developed by Tam et al. (1993) has been obtained. These novel methods obtained using MIEELDLD have in general better dispersive properties as compared to the existing optimised methods.


Sign in / Sign up

Export Citation Format

Share Document