Particulate organic matter release below melting sea ice (Terra Nova Bay, Ross Sea, Antarctica): Possible relationships with zooplankton

2021 ◽  
pp. 103510
Author(s):  
Alessandro Cau ◽  
Claudia Ennas ◽  
Davide Moccia ◽  
Olga Mangoni ◽  
Francesco Bolinesi ◽  
...  
1996 ◽  
Vol 8 (1) ◽  
pp. 7-13 ◽  
Author(s):  
M. Fabiano ◽  
P. Povero ◽  
R. Danovaro

Particulate organic matter was collected in the coastal waters of Terra Nova Bay during the Oceanographic Campaign of the Italian Antarctic Research Programme in summer (January–February) 1990. Particulate matter composition was analysed for organic carbon and nitrogen, carbohydrates, proteins, lipids, nucleic acids (DNA and RNA) and ATP. A vertical stratification was evident in the study area, and resulted from prior melting of the pack ice. Suspended organic matter in the mixed layer and below the mixed layer differed in quantitative and qualitative composition. Except for ATP, all the biochemical components showed higher concentrations in the mixed layer than in the deeper waters. The particulate organic matter in Terra Nova Bay was mostly detrital and of algal origin.


Polar Biology ◽  
2006 ◽  
Vol 30 (6) ◽  
pp. 747-758 ◽  
Author(s):  
Letterio Guglielmo ◽  
Giacomo Zagami ◽  
Vincenzo Saggiomo ◽  
Giulio Catalano ◽  
Antonia Granata
Keyword(s):  
Sea Ice ◽  
Ross Sea ◽  

2013 ◽  
Vol 61-62 ◽  
pp. 112-124 ◽  
Author(s):  
Emanuela Rusciano ◽  
Giorgio Budillon ◽  
Giannetta Fusco ◽  
Giancarlo Spezie

2020 ◽  
Vol 8 (9) ◽  
pp. 1273
Author(s):  
Renata Zaccone ◽  
Cristina Misic ◽  
Filippo Azzaro ◽  
Maurizio Azzaro ◽  
Giovanna Maimone ◽  
...  

The active prokaryotic communities proliferate in the ecosystems of the Antarctic Ocean, participating in biogeochemical cycles and supporting higher trophic levels. They are regulated by several environmental and ecological forcing, such as the characteristics of the water masses subjected to global warming and particulate organic matter (POM). During summer 2017, two polynyas in the Ross Sea were studied to evaluate key-microbiological parameters (the proteasic, glucosidasic, and phosphatasic activities, the microbial respiratory rates, the prokaryotic abundance and biomass) in relation to quantitative and qualitative characteristics of POM. Results showed significant differences in the epipelagic layer between two macro-areas (Terra Nova Bay and Ross Sea offshore area). Proteins and carbohydrates were metabolized rapidly in the offshore area (as shown by turnover times), due to high enzymatic activities in this zone, indicating fresh and labile organic compounds. The lower quality of POM in Terra Nova Bay, as shown by the higher refractory fraction, led to an increase in the turnover times of proteins and carbohydrates. Salinity was the physical constraint that played a major role in the distribution of POM and microbial activities in both areas.


2003 ◽  
Vol 15 (2) ◽  
pp. 175-188 ◽  
Author(s):  
A. ACCORNERO ◽  
C. MANNO ◽  
F. ESPOSITO ◽  
M.C. GAMBI

Downward fluxes of particulate matter were investigated in the polynya of Terra Nova Bay (western Ross Sea) from February 1995 to December 1997. The main biological components were siliceous phytoplankton (diatoms, silicoflagellates and parmales), abundant faecal pellets of several types and zooplankton (mainly shelled pteropods). Vertical fluxes of particles occurred mainly through diatoms and faecal pellets in the first and second part of the summer, respectively. The highest fluxes were recurrently observed in late summer, when faeces contributed up to 100% of organic carbon. Unusually high fluxes were recorded in winter 1995, when faecal pellets accounted for 84.6% of the organic carbon. Peak fluxes were always driven by the sinking of faecal pellets, that hence appear to be the most efficient vector of export in the polynya of Terra Nova Bay. A major flux component was the pteropod Limacina helicina, which repeatedly sank in high amounts after the growing season. In April–June, L. helicina probably transported biogenic carbon to deep layers as a passive sinker. The inclusion of pteropods in flux estimates resulted in values that were up to 20 (for total mass), 25 (for organic matter) and 48 (for carbonate) times higher than the previously measured fluxes. Fluxes are known to be biased by swimmers, but ultimately attention must be paid to a possible erroneous categorization of some zooplankton as swimmers to avoid severe underestimation of fluxes of total mass (up to 95% in our study), organic matter (up to 96%) and carbonate (up to 100%).


Polar Biology ◽  
2000 ◽  
Vol 23 (4) ◽  
pp. 288-293 ◽  
Author(s):  
Antonio Pusceddu ◽  
Antonio Dell'Anno ◽  
Mauro Fabiano

2007 ◽  
Vol 19 (1) ◽  
pp. 83-92 ◽  
Author(s):  
L. Lazzara ◽  
I. Nardello ◽  
C. Ermanni ◽  
O. Mangoni ◽  
V. Saggiomo

We investigated the physical conditions of the Spring pack ice environment at Terra Nova Bay to understand their influence on the structure and physiology of sympagic microalgae. Bio-optical methods were used to study the availability and spectral quality of solar radiation, both inside and underneath the ice cover. Pack ice thickness was around 2.5 m, with a temperature between −2 and −7°C. On average, only 1.4% of surface PAR penetrated to the bottom ice and less than 0.6% below platelet ice level. Surface UV-B radiation under the bottom ice was 0.2–0.4%. Biomass concentrations up to 2400 mg Chl a m−3, dominated by two species of diatoms (Entomoneis kjellmannii and Nitschia cf. stellata), showed marked spatial and temporal patterns. Maximum values were in the platelet ice during the first half of November, and in the bottom ice two weeks later. Strong shade adaptation characteristics emerged clearly and explained the relevant abundance of microalgae within the sea ice, with specific absorption coefficients (a*) as low as 0.005 m2 (mg Chl a)−1 and the photo-acclimation index (Ek) in the range of in situ irradiance. The biomass specific production values were low, around 0.12–0.13 mg C mg Chl a−1 h−1. The hypothesis suggesting bottom ice colonization by platelet ice microalgae is supported here.


2004 ◽  
Vol 20 (sup1) ◽  
pp. 43-55 ◽  
Author(s):  
L. Guglielmo ◽  
G. C. Carrada ◽  
G. Catalano ◽  
S. Cozzi ◽  
A. Dell'Anno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document