Numerical simulation of the transition of metal transfer from globular to spray mode in gas metal arc welding using phase field method

2018 ◽  
Vol 251 ◽  
pp. 251-261 ◽  
Author(s):  
Yangyang Zhao ◽  
Hyun Chung
Author(s):  
Y Wu ◽  
R Kovacevic

Gas metal arc welding has been generally accepted as the preferred joining technique due to its advantages in high production and automated welding applications. Separate control of arc energy and arc force is an essential way to improve the welding quality and to obtain the projected metal transfer mode. One of the most effective methods for obtaining separate control is to exert an additional force on the metal transfer process. In this paper, the droplet transfer process with additional mechanical force is studied. The welding system is composed of an oscillating wire feeder. The images of molten metal droplets are captured by a high-speed digital camera, and both the macroscopic appearance and the cross-sectional profiles of the weld beads are analysed. It is shown that the droplet transfer process can be significantly improved by wire electrode oscillation, and a projected spray transfer mode can be established at much lower currents. By increasing the oscillation frequency, the droplet transfer rate increases while the droplet size decreases. In addition, the improvement in the droplet transfer process with wire oscillation leads to an enhancement of the surface quality and a modification of the geometry of the weld beads that could be of importance for overlay cladding and rapid prototyping based on deposition by welding.


2019 ◽  
Author(s):  
Emad Uddin ◽  
Usman Iqbal ◽  
Nabeel Arif ◽  
Samiur Rehman Shah

2019 ◽  
Vol 38 ◽  
pp. 179-186 ◽  
Author(s):  
Jiangkang Huang ◽  
Wei Pan ◽  
Wenting Yang ◽  
Cheng Xue ◽  
Yu Shi ◽  
...  

Author(s):  
Y M Zhang ◽  
E Liguo

Feedback control of droplet transfer is pursued as a solution to produce sound welds in gas metal arc welding. In previous work, a real-time visual system has been developed to monitor on line the droplet size and geometry. To realize feedback control of metal transfer, this study addresses the dynamic process of droplet growth and detachment. The droplet is subjected to gravitational force, electromagnetic force, plasma drag force and surface tension force. The geometry of the droplet is determined by these forces through the static force balance. However, the forces acting on the droplet continuously change as the melting electrode wire changes the droplet geometry. Because of this interdependence between the droplet geometry and the forces, the model must be solved dynamically and iteratively. A numerical program has been developed to acquire its dynamic numerical solution. Hence, the dynamics of the metal transfer process can be understood and simulated. Currently, this model is being used to simulate theclosed-loop controlled metal transfer process using different advanced control technologies.


Sign in / Sign up

Export Citation Format

Share Document