scholarly journals Thermo-metallurgically coupled numerical simulation and validation of multi-layer gas metal arc welding of high strength pearlitic rails

2018 ◽  
Vol 63 (1) ◽  
pp. 63-73 ◽  
Author(s):  
L. Weingrill ◽  
M. B. Nasiri ◽  
N. Enzinger
Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1077 ◽  
Author(s):  
Seungmin Shin ◽  
Sehun Rhee

In this study, lap joint experiments were conducted using galvanized high-strength steel, SGAFH 590 FB 2.3 mmt, which was applied to automotive chassis components in the gas metal arc welding (GMAW) process. Zinc residues were confirmed using a semi-quantitative energy dispersive X-ray spectroscopy (EDS) analysis of the porosity in the weld. In addition, a tensile shear test was performed to evaluate the weldability. Furthermore, the effect of porosity defects, such as blowholes and pits generated in the weld, on the tensile shear strength was experimentally verified by comparing the porosity at the weld section of the tensile test specimen with that measured through radiographic testing.


Author(s):  
A Mathieu ◽  
I Tkachenko ◽  
JM Jouvard ◽  
I Tomashchuk

The present work covers the topic of strains and stresses prediction in case of welded steel structures. Steel sheets of 20 mm thickness made in UR™2507Cu are welded using a laser and gas metal arc welding processes combination. The focused laser beam leads the arc in a Y-shape chamfer geometry. Both sources are 20 mm apart from each other in order to avoid any synergic effect with each other. In order to predict residual strain, a 3D unsteady numerical simulation has been developed in COMSOL finite element software. A volume heat source has been identified based on the temperature measurements made by 10 K-type thermocouples, implanted inside the workpiece. The 50 mm deep holes are drilled in the workpiece using dye-sinking Electrical Discharge Machining (EDM) machine. Before the implantation in the hole, each thermocouple is surrounded by Inconel sheathing. Hot junctions of the thermocouples are positioned in a way to feel two advancing molten pools. The equivalent heat source is composed of three sources. First one is a Goldak source that represents the molten pool induced by gas metal arc welding. The second one is a cylinder with an elliptic cross-section that represents the focused laser beam penetrating into the workpiece. The third one is a surface Gaussian source that represents energy radiated by arc and blocked by workpiece surface. Concerning mechanical simulation, an elasto-plastic behavior with isotropic hardening is implemented. A weak coupling is established between equations governing heat transfer and mechanics thanks to the temperature dependent coefficient of linear expansion. This numerical simulation made with some simplifying assumptions predicts an angular distortion and a longitudinal shrinkage of the welded structure. The numerical results are consistent with the displacements measured by digital image correlation method.


2012 ◽  
Vol 710 ◽  
pp. 451-456
Author(s):  
Ravi Ranjan Kumar ◽  
P. K. Ghosh

Mechanical and fracture properties of 20MnMoNi55 grade high strength low alloy (HSLA) steel welds have been studied. The weld joints were made using Gas Tungsten Arc Welding (GTAW), Shielded Metal Arc Welding (SMAW) and Pulse Gas Metal Arc Welding (P-GMAW) methods on conventional V-groove (V-Groove) and Narrow groove (NG-13). The base metal and weld metal were characterised in terms of their metallurgical, mechanical and fracture toughness properties by following ASTM procedures. The J-Integral fracture test was carried out using compact tension C(T) specimen for base and weld metal. The fracture toughness and tensile properties of welds have been correlated with microstructure. In conventional V-groove welds prepared by P-GMAW shows the improvement in initiation fracture toughness (JIC) as compared to the weld prepared by SMAW. Similar improvements in tensile properties have also been observed. This is attributed to reduction in co-axial dendrite content due to lower heat input during P-GMAW process as compared to SMAW. In the narrow groove P-GMA weld prepared at f value of 0.15 has shown relative improvement of JIC as compared to that of the weld prepared by SMAW process.


10.30544/682 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 505-517
Author(s):  
Ashok Kumar Srivastava ◽  
Pradip K Patra

With an increasing demand for safer and greener vehicles, mild steel and high strength steel are being replaced by much stronger advanced high strength steels of thinner gauges. However, the welding process of advanced high strength steels is not developed at the same pace. The performance of these welded automotive structural components depends largely on the external and internal quality of weldment. Gas metal arc welding (GMAW) is one of the most common methods used in the automotive industry to join car body parts of dissimilar high strength steels. It is also recognized for its versatility and speed. In this work, after a review of GMAW process and issues in welding of advanced high strength steels, a welding experiment is carried out with varying heat input by using spray and pulse-spray transfer GMAW method with filler wires of three different strength levels. The experiment results, including macro-microstructure, mechanical properties, and microhardness of weld samples, are investigated in detail. Very good weldability of S650MC is demonstrated through the weld joint efficiency > 90%; no crack in bending of weld joints, or fracture of tensile test sample within weld joint or heat affected zone (HAZ), or softening of the HAZ. Pulse spray is superior because of thinner HAZ width and finer microstructure on account of lower heat input. The impact of filler wire strength on weldability is insignificant. However, high strength filler wire (ER100SG) may be chosen as per standard welding practice of matching strength.


Sign in / Sign up

Export Citation Format

Share Document