surface tension force
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1756
Author(s):  
Sergey G. Parshin ◽  
Peter Mayr

Achieving a higher quality in wire arc additive manufacturing (WAAM) is a result of the development of welding metallurgy, the development of filler wires, and the control of the thermophysical properties of the electric arc. In this paper, the authors developed composite wires for WAAM with a Ni-LaF3, Ni-LaB6 coating. The addition of LaF3, LaB6, and SF6 increases specific heat, thermal conductivity, enthalpy, and degree of plasma ionization, which leads to the increase in the transfer of heat from the arc plasma to the wire and to the change in the balance of forces during wire melting. The increase in the Lorentz electromagnetic force and the decrease in the surface tension force made it possible to reduce the droplet diameter and the number of short circuits during wire melting. The change in the thermophysical properties of the plasma and droplet transfer with the addition of LaF3, LaB6, and SF6 made it possible to increase the welding current, penetration depth, accuracy of the geometric dimensions of products in WAAM, reduce the wall thickness of products, and refine the microstructure of the weld metal using G3Si1, 316L, AlMg5Mn1Ti, and CuCr0.7 wires.


Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 319
Author(s):  
Omar Elsayed ◽  
Ralf Kirsch ◽  
Fabian Krull ◽  
Sergiy Antonyuk ◽  
Sebastian Osterroth

Recently, the trend towards sustainable energy production and pollution control has motivated the increased consumption of ultra-low-sulfur diesel (ULSD) or bio-fuels. Such fuels have relatively low surface tension with water and therefore, the separation of water from fuel has become a challenging problem. The separation process relies on using porous structures for the collection and removal of water droplets. Hence, understanding the interaction between water droplets and the separators is vital. The simplest geometry of a separator is the wire mesh screen, which is used in many modern water–diesel separators. Thus, it is considered here for systematic study. In this work, pore-scale computational fluid dynamics (CFD) simulations were performed using OpenFOAM® (an open-source C++ toolbox for fluid dynamics simulations) coupled with a new accurate scheme for the computation of the surface tension force. First, two validation test cases were performed and compared to experimental observations in corresponding bubble-point tests. Second, in order to describe the interaction between water droplets and wire mesh screens, the simulations were performed with different parameters: mean diesel velocity, open area ratio, fiber radii, Young–Laplace contact angle, and the droplet radius. New correlations were obtained which describe the average reduction of open surface area (clogging), the pressure drop, and retention criteria.


2021 ◽  
Author(s):  
Ivana Pajic-Lijakovic ◽  
Milan Milivojevic

Although collective cell migration (CCM) is a highly coordinated and ordered migratory mode, perturbations in the form of mechanical waves appear even in 2D. These perturbations caused by the viscoelastic nature of cell rearrangement are involved in various biological processes, such as embryogenesis, wound healing and cancer invasion. The mechanical waves, as a product of the active turbulence occurred at low Reynolds number, represent an oscillatory change in cell velocity and the relevant rheological parameters. The velocity oscillations, in the form of forward and backward flows, are driven by: viscoelastic force, surface tension force, and traction force. The viscoelastic force represents a consequence of inhomogeneous distribution of cell residual stress accumulated during CCM. This cause-consequence relation is considered on a model system such as the cell monolayer free expansion. The collision of forward and backward flows causes an increase in cell packing density which has a feedback impact on the tissue viscoelasticity and on that base influences the tissue stiffness. The evidence of how the tissue stiffness is changed near the cell jamming is conflicting. To fill this gap, we discussed the density driven change in the tissue viscoelasticity by accounting for the cell pseudo-phase transition from active (contractile) to passive (non-contractile) state appeared near cell jamming in the rheological modeling consideration.


Author(s):  
Reza Azadi ◽  
David S. Nobes

The examples of flow conditions, where an object of a fixed or deformable body moves in a fluid, or the interface between the flow phases instantaneously changes its topology, are numerous in industry and natural sciences. The advent of particle image velocimetry (PIV) [1] and particle tracking velocimetry (PTV) [2] enabled the measurement of the instantaneous velocity fields in these types of complicated flow fields. As a next step, several methodologies have been developed in the past decade to calculate the pressure fields from PIV or PTV data [3,4]. These methods were developed based on the assumption of a stationary flow domain, with surface boundaries that are fixed and independent of time. This makes the current pressure calculation methods inapplicable to a flow domain with deformable moving surface boundaries. Also, for most of the two-phase flows, the capillary forces are significant and the pressure drop over the two-phase interface must be considered. Therefore, the current pressure calculators require an improvement in the formulation of the algorithms to account for the deformable volume conditions and the effect of the surface tension force. For the calculation of pressure from sparse PTV velocity data, firstly, a tessellation method is required to interconnect the irregularly spaced vectors in the flow field using a highquality mesh grid. The mesh must be dynamic and adjust itself to the moving boundaries. This tessellation method has already been developed by the current authors [5]. As the next step, equations of motion for a deformable C.V. need to be coupled with the tessellation method to calculate the instantaneous pressures in a two-phase flow field, with a moving interface, which will be the ultimate goal of the current study.


2021 ◽  
Vol 28 (2) ◽  
pp. 285-293
Author(s):  
Juan M. Restrepo ◽  
Alex Ayet ◽  
Luigi Cavaleri

Abstract. We make a physical–mathematical analysis of the implications that the presence of a large number of tiny bubbles may have, when present, on the thin upper layer of the sea. In our oceanographic example, the bubbles are due to intense rain. It was found that the bubbles increase momentum dissipation in the near surface and affect the surface tension force. For short waves, the implications of increased vorticity are momentum exchanges between wave and mean flow and modifications to the wave dispersion relation. For the direct effect we have analyzed, the implications are estimated to be non-significant when compared to other processes of the ocean. However, we hint at the possibility that our analysis may be useful in other areas of research or practical application.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 78
Author(s):  
Giovanni Tretola ◽  
Konstantina Vogiatzaki

The ability to accurately predict the dynamics of fast moving and deforming interfaces is of interest to a number of applications including ink printing, drug delivery and fuel injection. In the current work we present a new compressible framework within OpenFOAM which incorporates mitigation strategies for the well known issue of spurious currents. The framework incorporates the compressible algebraic Volume-of-Fluid (VoF) method with additional interfacial treatment techniques including volume fraction smoothing and sharpening (for the calculation of the interface geometries and surface tension force, respectively) as well as filtering of the capillary forces. The framework is tested against different benchmarks: A 2D stationary droplet, a high velocity impact droplet case (500 m/s impact velocity) against a dry substrate and, with the same impact conditions, against a liquid film. For the 2D static droplet case, our results are consistent with what is observed in the literature when these strategies are implemented within incompressible frameworks. For the high impact droplet cases we find that accounting for both compressibility and correct representation of the interface is very important in numerical simulations, since pressure waves develop and propagate within the droplet interacting with the interface. While the implemented strategies do not alter the dynamics of the impact and the droplet shape, they have a considerable effect on the lamella formation. Our numerical method, although currently implemented for droplet cases, can also be used for any fast moving interface with or without considering the impact on a surface.


2021 ◽  
pp. 28-34
Author(s):  
Dmitry V. KIESEWETTER ◽  
◽  
Denis A. TRUBIN ◽  
Alan E. KULKAEV ◽  
◽  
...  

The national standards on measuring the breakdown voltage of liquid dielectrics are considered, in particular, the measurement procedure and the measuring cell main parameters. The breakdown voltage of PDMS-1000, PDMS-12500 and PDMS-30000 liquids produced by various manufacturers was measured, and the main problems faced in carrying out measurements were identified. It is shown, using the example of polydimethylsiloxane liquid dielectrics, that after breakdown of viscous liquids, a channel is produced in them, which consists of gas bubbles held by the surface tension force, due to which the channel may in many cases persist for a long time. Theoretical calculations confirmed by an experiment were performed, based on which the velocity of air bubbles in polydimethylsiloxane liquids can be estimated. A conclusion has been drawn about the necessity to increase the time intervals between individual measurements, as well as the time interval before the start of measurements after pouring the test liquid into the measurement cell. It is shown that visual control of the interelectrode region and a special method of mixing the liquid are also necessary. It can be stated based on the accomplished study that the existing standards for breakdown voltage measurements in viscous liquids need to be refined.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Venkatesh Inguva ◽  
Andreas Schulz ◽  
Eugeny Y. Kenig

AbstractIn two-phase flows in which the Capillary number is low, errors in the computation of the surface tension force at the interface cause Front-Capturing methods such as Volume of Fluid (VOF) and Level-Set (LS) to develop interfacial spurious currents. To better solve low Capillary number flows, special treatment is required to reduce such spurious currents. Smoothing the phase indicator field to more accurately compute the curvature or adding interfacial artificial viscosity are techniques that can treat this problem. This study explores OpenFOAM, Fluent and StarCCM+ VOF solvers for the classical case of a static bubble/droplet immersed in a continuous aqueous phase, with the focus on the ability of these solvers to adequately reduce spurious currents. The results are expected to be helpful for practicing chemical engineers who use multiphase CFD solvers in their work.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3774
Author(s):  
Mohammad Yaghoobi ◽  
Mohammad Said Saidi ◽  
Sepehr Ghadami ◽  
Navid Kashaninejad

Droplet-based microfluidics offers significant advantages, such as high throughput and scalability, making platforms based on this technology ideal candidates for point-of-care (POC) testing and clinical diagnosis. However, the efficiency of co-encapsulation in droplets is suboptimal, limiting the applicability of such platforms for the biosensing applications. The homogeneity of the bioanalytes in the droplets is an unsolved problem. While there is extensive literature on the experimental setups and active methods used to increase the efficiency of such platforms, passive techniques have received less attention, and their fundamentals have not been fully explored. Here, we develop a novel passive technique for investigating cell encapsulation using the finite element method (FEM). The level set method was used to track the interfaces of forming droplets. The effects of walls and the droplet interfaces on relatively large cells were calculated to track them more accurately during encapsulation. The static surface tension force was used to account for the effects of the interfaces on cells. The results revealed that the pairing efficiency is highly sensitive to the standard deviation (SD) of the distance between the cells in the entrance channel. The pairing efficiency prediction error of our model differed by less than 5% from previous experiments. The proposed model can be used to evaluate the performance of droplet-based microfluidic devices to ensure higher precision for co-encapsulation of cells.


2020 ◽  
Vol 3 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Kurian J. Vachaparambil ◽  
Kristian Etienne Einarsrud

Abstract Amongst the multitude of approaches available in literature to reduce spurious velocities in Volume of Fluid approach, the Sharp Surface Force (SSF) model is increasingly being used due to its relative ease to implement. The SSF approach relies on a user-defined parameter, the sharpening coefficient, which determines the extent of the smeared nature of interface used to determine the surface tension force. In this paper, we use the SSF model implemented in OpenFOAM® to investigate the effect of this sharpening coefficient on spurious velocities and accuracy of dynamic, i.e., capillary rise, and static bubble simulations. Results show that increasing the sharpening coefficient generally reduces the spurious velocities in both static and dynamic cases. Although static millimeter sized bubbles were simulated with the whole range of sharpening coefficients, sub-millimeter sized bubbles show nonphysical behavior for values larger than 0.3. The accuracy of the capillary rise simulations has been observed to change non-linearly with the sharpening coefficient. This work illustrates the importance of using an optimized value of the sharpening coefficient with respect to spurious velocities and accuracy of the simulation.


Sign in / Sign up

Export Citation Format

Share Document