scholarly journals Nylon lattice design parameter effects on additively manufactured structural performance

Author(s):  
Daniel A. Porter ◽  
Matthew A. Di Prima ◽  
Yutika Badhe ◽  
Ankit R. Parikh
Author(s):  
Tsz Ling Elaine Tang ◽  
Yan Liu ◽  
Da Lu ◽  
Erhan Batuhan Arisoy ◽  
Suraj Musuvathy

Additive manufacturing (AM) exemplifies the potential of lattice structures to revolutionize structural design. It enables light weight lattice structures to be produced while maintaining the desirable structural performance. Lattice design can vary in different shapes and dimensions. Obtaining the structural performance of a particular lattice structure design is not a straight-forward process. Significant effort is required to perform mechanical testing experiments or to perform finite element analysis (FEA) to characterize the lattice design. In view of that, a guidance system to determine lattice design parameters based on desired functional performance for a specific lattice type is developed, which can be used in interactive design processes and workflows. Homogenization using FEA experiments is applied to characterize the macroscopic lattice structural properties. Mechanical properties of orthotropic cubic lattice f2ccz are estimated. It follows with a design of experiment study to characterize the effective structural properties of 39 lattices with respect to lattice design parameters (unit cell length and strut diameter). A Gaussian process is applied to develop models relating the lattice design parameter to macroscopic structural properties (forward model), and vice versa (inverse model). Both the forward and inverse models are examined and shown to be capable of modeling the FEA experimental dataset of 39 lattices. To illustrate the potential application of the lattice design advisor framework, a structural design use case including lattice part is presented. In the use case, the lattice structure design advisor is proven to be able to estimate an accurate homogenized material property of arbitrary lattice design parameter. This lattice structure design advisor can simplify and streamline the design, modeling and simulation process of lattice-filled structural designs.


1970 ◽  
Vol 3 ◽  
pp. 28-34
Author(s):  
Ejigu Ejara, Wassu Mohammed, Berhanu Amsalu ◽  
Zinash Misgana, Mulatu Gabisa, Ganane Tasama

Common bean is among the major crops grown in southern Ethiopia including Borana zone where the majority of the farmers are Agro-pastoralist and produce the crop mainly for home consumption. The area has potential to the production of common bean for food and nutrition security as well as export commodity. However, scarcity of varieties that fit to the environment is one of the major constraints of production. Therefore, this experiment was conducted to evaluate 36 common bean genotypes including seven released varieties to evaluate performance of genotypes for yield and agronomic traits. The field experiment was conducted in 2015 at two locations (Abaya and Yabello) and genotypes were planted in triple lattice design. Data were collected on yield and important agronomic traits. Analysis of variance computed for individual locations and combined analysis over locations revealed significant variations among genotypes for all traits. Moreover, 16.67% of the genotypes had mean grain yield greater than the best performing released variety across locations and the genotypes showed a grain yield as high as 3.25 tons ha-1. Based on results of this study it is recommended to test the high yielding and early maturing genotypes at many locations to develop preferred varieties across many locations.


Tuned mass dampers (TMD) are one of the most reliable devices to control the vibration of the structure. The optimum mass ratio required for a single tuned mass damper (STMD) is evaluated corresponding to the fundamental natural frequency of the structure. The effect of STMD and Multiple tuned mass dampers (MTMD) on a G+20 storey structure are studied to demonstrate the damper’s effectiveness in seismic application. The location and number of tuned mass dampers are studied to give best structural performance in maximum reduction of seismic response for El Centro earthquake data. The analysis results from SAP 2000 software tool shows damper weighing 2.5% of the total weight of the structure effectively reduce the response of the structure. Study shows that introduction of 4-MTMD at top storey can effectively reduce the response by 10% more in comparison to single tuned mass damper. The use of MTMD of same mass ratio that of STMD is more effective in seismic response.


Sign in / Sign up

Export Citation Format

Share Document