Magnetic properties and microwave absorption in Ni–Zn and Mn–Zn ferrite nanoparticles synthesized by low-temperature solid-state reaction

2011 ◽  
Vol 323 (6) ◽  
pp. 730-734 ◽  
Author(s):  
Gh.R. Amiri ◽  
M.H. Yousefi ◽  
M.R. Abolhassani ◽  
S. Manouchehri ◽  
M.H. Keshavarz ◽  
...  
2007 ◽  
Vol 56 (10) ◽  
pp. 6050
Author(s):  
Liu Jin-Hong ◽  
Zhang Ling-Fei ◽  
Tian Geng-Fang ◽  
Li Ji-Chen ◽  
Li Fa-Shen

2011 ◽  
Vol 686 ◽  
pp. 316-318 ◽  
Author(s):  
Jian Rong Sun ◽  
Zhi Guang Wang ◽  
Yu Yu Wang ◽  
Kong Fang Wei ◽  
Fa Shen Li

MgFe2O4 nanoparticles with different grain sizes were prepared by the low-temperature solid-state reaction method. The X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), superconducting quantum interference devices (SQUID) and 57Fe Mössbauer spectroscopy (MS) were used to characterize the structure, magnetic properties and surface anisotropy of nanoparticles. Oxygen parameters suggested that lattice distortion was decreased with reducing particle size. In comparison with the bulk material, smaller saturation magnetization (Ms) and larger coercive force (Hc) for nanoparticles were observed. The critical sizes for transition from multidomain to single domain and for superparamagnetic transition were estimated to be 25 nm and 28 nm, respectively. In summary, the fabricating conditions for the low-temperature solid-state reaction method are studied to improve Ms and reduce Hc of the films, making the films suitable to the applications of the magnetic targeted drug.


2021 ◽  
Vol 260 ◽  
pp. 124178
Author(s):  
Pavel Veverka ◽  
Lenka Kubíčková ◽  
Zdeněk Jirák ◽  
Vít Herynek ◽  
Miroslav Veverka ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (44) ◽  
pp. 25258-25267 ◽  
Author(s):  
R. A. Pawar ◽  
Sunil M. Patange ◽  
A. R. Shitre ◽  
S. K. Gore ◽  
S. S. Jadhav ◽  
...  

Rare earth (RE) ions are known to improve the magnetic interactions in spinel ferrites if they are accommodated in the lattice, whereas the formation of a secondary phase leads to the degradation of the magnetic properties of materials.


2018 ◽  
Vol 56 (1) ◽  
pp. 31
Author(s):  
Luong Thi Quynh Anh ◽  
Nguyen Van Dan ◽  
Do Minh Nghiep

The crystalline nanoparticles of Ni0.2Zn0.8Fe2O4 ferrite were synthesized by chemical co-precipitation with precursor concentration of 0.1M, then modified by 0.25M solution of oleic acid in pentanol, finally heated at temperatures 120, 140, 160 and 180oC for 6h in autoclave. The XRD, EDS and TEM confirmed that all of samples are crystalline and their particle size are 6, 6.5, 7 and 8 nm. The magnetic properties showed that the coercive force, the remanence of samples are about zero, the saturation magnetization Ms has values from 14.20 to 27.12 emu/g.


Sign in / Sign up

Export Citation Format

Share Document