Half-metallic property with Dirac-like crossings in synthesized rhombohedral-type PrNiO3 material and influence of uniform strain, hole and electron doping, and spin-orbit coupling on its electronic structures

2019 ◽  
Vol 492 ◽  
pp. 165665
Author(s):  
Li Zhang ◽  
Yu Feng ◽  
Yilin Han ◽  
Tie Yang ◽  
Xiaotian Wang
2013 ◽  
Vol 683 ◽  
pp. 211-217
Author(s):  
Hong Ying Jia ◽  
Xue Fang Dai ◽  
Li Ying Wang ◽  
Fang Wang ◽  
Lei Chen ◽  
...  

We have studied the influence of spin-orbit coupling (SOC) on the electronic structures and half-metallicity for the V2ReZ (Z=Al, Ga, In) compounds. It was found that the SOC has a slight influence on the whole configuration of the electronic structure and the degenerated states were split into several singlet states at the high-symmetry points. The egand t1ustates near the Fermi level are not sensitive to the SOC. The t2gstates composed of the side of half-metallic gap are sensitive to the SOC. The dispersivity of t2gstates was strongly reduced, which lead to an increase of the valence electron effective mass and the width of half-metallic gap. The SOC can slightly increase the spin splitting of Re and V(B) atoms. The Z atom has an influence on the intensity of SOC to act on half-metallic gap.


2016 ◽  
Vol 30 (12) ◽  
pp. 1650078 ◽  
Author(s):  
Sandeep Chettri ◽  
D. P. Rai ◽  
A. Shankar ◽  
R. Khenata ◽  
M. P. Ghimire ◽  
...  

The electronic, thermoelectric, optical, and magnetic properties of the samarium aluminate (SmAlO3) compound is studied using the spin-polarized full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The exchange and correlation potential is treated with the generalized gradient approximation (GGA) and the Coulomb repulsion ([Formula: see text] Ry) has been calculated theoretically and was used for the GGA[Formula: see text] based approximated electronic structures. Additionally, the modified Becke–Johnson (mBJ) potential was also utilized along with the GGA[Formula: see text] approach for the calculation of the band gap. On the other hand, the optical properties were analyzed with the mBJ[Formula: see text] results and the thermoelectric properties were explained on the basis of the electronic structures and density of states (DOS) with a thermoelectric efficiency of 0.66 at 300 K. The minimum reflectivity at 1.13 eV (which was equal to 1.097 [Formula: see text]m) was found to be in agreement with the experimental results. Further refinements in the electronic structures were obtained by adding the spin–orbit coupling (SOC) interactions to the GGA[Formula: see text] approach, which was then combined with the mBJ approximations. Hence, a conclusion using the combined mBJ[Formula: see text]SOC study indicates that the SmAlO3 compound is a potential candidate for both thermoelectric as well as magnetic devices.


RSC Advances ◽  
2016 ◽  
Vol 6 (53) ◽  
pp. 47953-47958 ◽  
Author(s):  
San-Dong Guo

We investigate the electronic structures and thermoelectric properties of a recently synthesized half-Heusler ZrNiPb compound by using a generalized gradient approximation (GGA) and GGA plus spin–orbit coupling (GGA + SOC).


2021 ◽  
Author(s):  
Liping Liu ◽  
Jin Cao ◽  
Wei Guo ◽  
Chongyu Wang

Abstract Heavy elements (X = Ta/W/Re) play an important role in the performance of superalloys, which enhance the strength, anti-oxidation, creep resistance, and anti-corrosiveness of alloy materials in a high-temperature environment. In the present research, the heavy element doping effects in FCC-Ni (γ) and Ni3Al (γ') systems are investigated in terms of their thermodynamic and mechanical properties, as well as electronic structures. The lattice constant, bulk modulus, elastic constant, and dopant formation energy in non-spin, spin polarized, and spin-orbit coupling (SOC) calculations are compared. The results show that the SOC effects are important in accurate electronic structure calculations for alloys with heavy elements. We find that including spin for both γ and γ' phases is necessary and sufficient for most cases, but the dopant formation energy is sensitive to different spin effects, for instance, in the absence of SOC, even spin-polarized calculations give 1% to 9% variance in the dopant formation energy in our model. Electronic structures calculations indicate that spin polarization causes a split in the metal d states, and SOC introduces a variance in the spin-up and spin-down states of the d states of heavy metals and reduces the magnetic moment of the system.


Sign in / Sign up

Export Citation Format

Share Document