thermoelectric efficiency
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 40)

H-INDEX

39
(FIVE YEARS 0)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhonglin Bu ◽  
Xinyue Zhang ◽  
Yixin Hu ◽  
Zhiwei Chen ◽  
Siqi Lin ◽  
...  

AbstractLow-grade heat accounts for >50% of the total dissipated heat sources in industries. An efficient recovery of low-grade heat into useful electricity not only reduces the consumption of fossil-fuels but also releases the subsequential environmental-crisis. Thermoelectricity offers an ideal solution, yet low-temperature efficient materials have continuously been limited to Bi2Te3-alloys since the discovery in 1950s. Scarcity of tellurium and the strong property anisotropy cause high-cost in both raw-materials and synthesis/processing. Here we demonstrate cheap polycrystalline antimonides for even more efficient thermoelectric waste-heat recovery within 600 K than conventional tellurides. This is enabled by a design of Ni/Fe/Mg3SbBi and Ni/Sb/CdSb contacts for both a prevention of chemical diffusion and a low interfacial resistivity, realizing a record and stable module efficiency at a temperature difference of 270 K. In addition, the raw-material cost  to the output power ratio in this work is reduced to be only 1/15 of that of conventional Bi2Te3-modules.



Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Jianfei Chen ◽  
Wei Xie ◽  
Min Dai ◽  
Guorong Shen ◽  
Guoneng Li ◽  
...  

In order to utilize waste heat from passenger vehicles by a thermoelectric generator (TEG), a lab-scale TEG with a sufficient low-pressure drop was designed and tested. The waste heat from a 2.0 L petrol engine was simulated by using an air-circulation channel with an adjustable electric heater and a speed control motor. The TEG consisted of an integrated molding designed aluminum-finned heat collector, twenty thermoelectric modules, and a set of water-cooled heat sinks. Experiments were conducted in terms of power load feature, pressure drop, heat collection efficiency, thermoelectric efficiency and overall efficiency. It was found that the hot-end temperature was much lower (46.9%) than the flue gas temperature because the trade-off between fin area and pressure drop had to be considered. The obtained maximum electric power was 36.4 W, and the corresponding pressure drop was 36 Pa. The corresponding heat collection efficiency was 46.5%, and the thermoelectric efficiency was 2.88%, which agreed well with the theoretical prediction of 3.38%. As a result, an overall efficiency of 1.21% was reached. The present work firstly demonstrated a waste-heat-recovering TEG prototype with a balanced overall efficiency of over 1%, and a pressure drop of less than 50 Pa. On the other hand, the maximum electric power was difficult to fully extract. The charging power to a battery with a maximum power point tracking direct current–direct current converter was experimentally verified to work at a much higher conversion efficiency (15.3% higher) than regular converters.



2022 ◽  
Vol 119 (3) ◽  
pp. e2113967119
Author(s):  
Laurent P. René de Cotret ◽  
Martin R. Otto ◽  
Jan-Hendrik Pöhls ◽  
Zhongzhen Luo ◽  
Mercouri G. Kanatzidis ◽  
...  

SnSe is a layered material that currently holds the record for bulk thermoelectric efficiency. The primary determinant of this high efficiency is thought to be the anomalously low thermal conductivity resulting from strong anharmonic coupling within the phonon system. Here we show that the nature of the carrier system in SnSe is also determined by strong coupling to phonons by directly visualizing polaron formation in the material. We employ ultrafast electron diffraction and diffuse scattering to track the response of phonons in both momentum and time to the photodoping of free carriers across the bandgap, observing the bimodal and anisotropic lattice distortions that drive carrier localization. Relatively large (18.7 Å), quasi-one-dimensional (1D) polarons are formed on the 300-fs timescale with smaller (4.2 Å) 3D polarons taking an order of magnitude longer (4 ps) to form. This difference appears to be a consequence of the profoundly anisotropic electron–phonon coupling in SnSe, with strong Fröhlich coupling only to zone-center polar optical phonons. These results demonstrate a high density of polarons in SnSe at optimal doping levels. Strong electron-phonon coupling is critical to the thermoelectric performance of this benchmark material and, potentially, high performance thermoelectrics more generally.



Author(s):  
А.А. Шабалдин ◽  
А.Ю. Самунин ◽  
П.П. Константинов ◽  
С.В. Новиков ◽  
А.Т. Бурков ◽  
...  

In this work, we study the properties of GeTe -based alloys, doped with bismuth, with partial substitution of lead for germanium: Ge0.86Pb0.1Bi0.04Te. The aim of the study is to explore the possibility of increasing the thermoelectric efficiency of a compound by combining optimal doping and isovalent substitution to improve the electronic properties with a simultaneous decrease of the lattice thermal conductivity. We studied alloy samples prepared in two different research laboratories using similar, but not completely identical procedures. It is shown that the electronic (thermoelectric power and electrical conductivity) properties of the samples of the two groups are in good agreement with each other. The properties of alloys depend on the thermal history of the samples due to the presence at temperatures of 600–800 K of a phase transition from a low-temperature rhombohedral to a high-temperature cubic structural modification. The thermoelectric figure of merit of alloys reaches a maximum value of 1.5 at a temperature of about 750 K.



Author(s):  
В.А Герега ◽  
А.В Суслов ◽  
В.А Комаров ◽  
В.М Грабов ◽  
Е.В Демидов ◽  
...  

The study of the electronic properties of ultrathin films of pure bismuth and bismuth-antimony alloys is of interest, since an increase in conductivity with decreasing sample thickness was found. This paper presents the results of an experimental study of the structure, electrical, galvanomagnetic and thermoelectric properties of pure bismuth and Bi1−x Sbx thin films (x = 0.05 and 0.12) on a mica substrate in the thickness range of 10−30 nm. An increase in the conductivity with a decrease in the thickness of the samples was found. It may be due to the presence of topologically protected surface states. It is shown that the features of the manifestation of this effect are significantly influenced by the alloys band structure. The form of the temperature dependences of the Seebeck coefficient casts doubt on the fact that surface states have a positive effect on the thermoelectric efficiency of thin bismuth-antimony films. However, the detection of a positive thermoelectric power in Bi0.88Sb0.12 samples can become an important factor for searching for the possibility of creating a p-branch of thermoelectric converters.



Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Shao-Bo Chen ◽  
Gang Liu ◽  
Wan-Jun Yan ◽  
Cui-E Hu ◽  
Xiang-Rong Chen ◽  
...  

Thermoelectric (TE) materials can convert waste heat into electrical energy, which has attracted great interest in recent years. In this paper, the effect of biaxial-tensile strain on the electronic properties, lattice thermal conductivity, and thermoelectric performance of α-phase Se2Te and SeTe2 monolayers are calculated based on density-functional theory and the semiclassical Boltzmann theory. The calculated results show that the tensile strain reduces the bandgap because the bond length between atoms enlarges. Moreover, the tensile strain strengthens the scatting rate while it weakens the group velocity and softens the phonon model, leading to lower lattice thermal conductivity kl. Simultaneously, combined with the weakened kl, the tensile strain can also effectively modulate the electronic transport coefficients, such as the electronic conductivity, Seebeck coefficient, and electronic thermal conductivity, to greatly enhance the ZT value. In particular, the maximum n-type doping ZT under 1% and 3% strain increases up to six and five times higher than the corresponding ZT without strain for the Se2Te and SeTe2 monolayers, respectively. Our calculations indicated that the tensile strain can effectively enhance the thermoelectric efficiency of Se2Te and SeTe2 monolayers and they have great potential as TE materials.



2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
ROZALE HABIB ◽  
M. Khetir ◽  
A. Maafa ◽  
F. Boukabrime ◽  
A. Bouabça ◽  
...  

Since they have become indispensable in various technological applications and a powerfulsource for generating energy in thermoelectric devices, Lithium-based alloys symbolize the topicof many experimental and theoretical reports. Hence, LiAlX(X = C, Si, Ge, Sn) materials representthe main research in this study. Different interesting properties such as the effect of pressure onthe band gap as well as the elastic parameters and the thermoelectric efficiency of these materialswere investigated using the full potential linearized augmented plane wave (FP-LAPW) method.LiAlX alloys were found to be semiconducting with indirect band gaps. When studying themechanical properties, we found that LiAlC alloy is stable against a wide range of pressurechanges (90 GPa), while the rest three systems preserve their mechanical stability in a moderaterespectively range of 40, 50 and 30 GPa, respectively. The semiconducting band gap for eachpossible transition have been calculated in a range of different pressures using both GGA andmBJ-GGA approximations. The results ended up revealing a decaying trend of the indirect gapalong Г-X direction with the increase of pressure. High values of the power factor were achievedand a large figure of merit (almost 0.7 for all systems) was calculated at 600K, which makesthese Li-based alloys very auspicious in the thermoelectric field applications.



Author(s):  
Alejandra Ruiz-Clavijo ◽  
Olga Caballero-Calero ◽  
Cristina V. Manzano ◽  
Xavier Maeder ◽  
Albert Beardo ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrice Limelette

AbstractThe thermoelectric efficiency accounting for the conversion of thermal energy into electricity is usually given by the figure of merit which involves three transport coefficients, with the thermopower, the electrical and the thermal conductivities. These coefficients can be defined at a semi-classical level as a function of Fermi integrals which only allow analytical approximations in either highly degenerate or strongly non-degenerate regimes. Otherwise, the intermediate regime which is of interest in order to describe high thermoelectric performance requires numerical calculations. It is shown that these Fermi integrals can actually be calculated and that the transport coefficients can be reformulated accordingly. This allows for a new definition of the figure of merit which covers all the regimes of interest without numerical calculations. This formulation of the Fermi integrals also provides a good starting point in order to perform a power expansion leading to a new approximation relevant for the intermediate regime. It turns out that the transport coefficients can then be expanded by revealing their high temperatures asymptotic behaviors. These results shed new light on the thermoelectric properties of the materials and point out that the analysis of their high temperatures behaviors allow to characterize experimentally the energy dependence in the transport integrals.



Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7019
Author(s):  
Sonya Harizanova ◽  
Eric Faulques ◽  
Benoit Corraze ◽  
Christophe Payen ◽  
Marcin Zając ◽  
...  

The common approach to modify the thermoelectric activity of oxides is based on the concept of selective metal substitution. Herein, we demonstrate an alternative approach based on the formation of multiphase composites, at which the individual components have distinctions in the electric and thermal conductivities. The proof-of-concept includes the formation of multiphase composites between well-defined thermoelectric Co-based oxides: Ni, Fe co-substituted perovskite, LaCo0.8Ni0.1Fe0.1O3 (LCO), and misfit layered Ca3Co4O9. The interfacial chemical and electrical properties of composites are probed with the means of SEM, PEEM/XAS, and XPS tools, as well as the magnetic susceptibility measurements. The thermoelectric power of the multiphase composites is evaluated by the dimensionless figure of merit, ZT, calculated from the independently measured electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (λ). It has been demonstrated that the magnitude’s electric and thermal conductivities depend more significantly on the composite interfaces than the Seebeck coefficient values. As a result, the highest thermoelectric activity is observed at the composite richer on the perovskite (i.e., ZT = 0.34 at 298 K).



Sign in / Sign up

Export Citation Format

Share Document