uniform strain
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Kaiyuan Liu ◽  
Hui Ji ◽  
Tonghui Wu ◽  
Shengping Shen ◽  
Shuwen Zhang ◽  
...  

MRS Bulletin ◽  
2021 ◽  
Author(s):  
Robert J. Young ◽  
Chris Holland ◽  
Zhengzhong Shao ◽  
Fritz Vollrath

Abstract Raman spectroscopy is used to elucidate the effect of spinning conditions upon the structure and mechanical properties of silk spun by Nephila spiders from the major ampullate gland. Silk fibers produced under natural spinning conditions with spinning rates between 2 and 20 mm s−1 differed in microstructure and mechanical properties from fibers produced either more slowly or more rapidly. The data support the “uniform strain” hypothesis that the reinforcing units in spider silk fibers are subjected to the same strain as the fiber, to optimize the toughness. In contrast, in the case of synthetic high-performance polymer fibers, the both units and the fiber experience uniform stress, which maximizes stiffness. The comparison of Nephila major and minor ampullate silks opens an intriguing window into dragline silk evolution and the first evidence of significant differences between the two silks providing possibilities for further testing of hypotheses concerning the uniform strain versus uniform stress models. Impact statement It is well established that the microstructure and mechanical properties of engineering materials are controlled by the conditions employed to both synthesize and process them. Herein, we demonstrate that the situation is similar for a natural material, namely spider silk. We show that for a spider that normally produces silk at a reeling speed of between 2 and 20 mm s−1, silk produced at speeds outside this natural processing window has a different microstructure that leads to inferior tensile properties. Moreover, we also show that the silk has a generic microstructure that is optimized to respond mechanically to deformation such that the crystals in the fibers are deformed under conditions of uniform strain. This is different from high-performance synthetic polymer fibers where the microstructure is optimized such that crystals within the fibers are subjected to uniform stress. Graphic abstract


2021 ◽  
Author(s):  
Amarjeet Kumar Singh ◽  
Krishnaiyengar Narasimhan

Abstract In the last few years, demand for hot stamped components has increased in the automotive industry. Determination of formability under hot stamping is challenging due to elevated temperature, fast cooling and high punch velocity. Although there was various strive for formability determination but had limitations with experiments like non-uniform heating of specimen, non-uniform strain and temperature distribution. Therefore, in this work, an experimental apparatus was developed to determine formability at room temperature, high temperature, hot stamping conditions, and any complex process cycle involving heating and cooling. New specimen was designed to produce different strain paths, uniform and homogenous temperature distribution with the help of FEM software using thermomechanical and thermoelectrical simulation. A micro hemispherical dome based experimental apparatus was designed using Solidworks. The designed apparatus was used in conjunction with the thermo-mechanical simulator (Gleeble-3800). Thermomechanical analysis was done in PAM STAMP software to optimize specimen size and shape to get uniform strain distribution and different strain paths. A thermoelectric FEM model was developed using Abaqus 6.14 to optimize the temperature distribution in the specimen. The developed model enables choosing the appropriate polarity of the electrical cable connection to achieve uniform temperature distribution in the specimen. Strain path and temperature profiles for experiment and simulation were compared. Further, a forming limit curve was developed using the designed apparatus to verify the feasibility of the apparatus. For feasibility test of apparatus, hot stamping process was selected. This new design apparatus can be used for a range of temperatures up to 1000 °C, hot stamping conditions, and for different materials (aluminium, magnesium alloys, different grade of steel, etc.). It concludes that the connection of different polarities of electrical cable was critical for homogenous and uniform temperature distribution in specimens.


2021 ◽  
Author(s):  
Rohan Soman ◽  
Pawel Kudela ◽  
Maciej Radzienski ◽  
Wieslaw Ostachowicz

Abstract Guided waves (GW) allow fast inspection of a large area and hence have received great interest from the structural health monitoring (SHM) community. Fiber Bragg grating (FBG) sensors offer several advantages but their use for GW sensing has been limited due to their limited sensitivity. FBG sensors in the edge-filtering configuration have overcome this issue with sensitivity and there is a renewed interest in their use. It has been seen that depending on the ratio of the wavelength of the propagating wave to the gauge length of the FBG, the mechanism of the transduction of the wave measurement is different. A large ratio leads to a more uniform strain over the FBG leading to a shift in the frequency, while a non-uniform strain due to a short wavelength, leads to the peak widening. The present paper studies this phenomena and develops a signal processing technique for the filtering of the modes.


2021 ◽  
Vol 484 ◽  
pp. 126689
Author(s):  
Yufang Bai ◽  
Jie Zeng ◽  
Jiwei Huang ◽  
Zhuming Cheng ◽  
Qidi Zhao ◽  
...  

2021 ◽  
Author(s):  
abdollah malakzadeh ◽  
mohsen mansoursamaei ◽  
Rasoul Pashaie

Abstract Many efforts have been devoted to simultaneous measurements of strain and temperature by FBG sensors and several improving techniques have been resulted and implemented on the measurement. Most of them are based on two or more FBGs configurations or a single non-uniform FBG implementation. We propose simultaneous measurement of temperature and strain based on peak power changes and Bragg wavelength shifts using only one uniform fiber Bragg grating (FBG). We placed a ramp with the angle of θ, similar to a tilted cantilever beam, on an assumptive structure and stuck a uniform FBG on it. When a uniform strain applied to a structure, the cantilever beam converts it to a non-uniform strain distribution along with itself and consequently the uniform FBG. By creating this non-uniform strain distribution, the peak power of the reflection spectrum of the FBG will be sensitive to strain changes. In addition, the Bragg wavelength shift will be sensitive to both temperature and strain parameters. According to our simulation, temperature sensitivity of 14.15 pm/℃ is obtained for FBG sensor without any changes in the peak power. The strain sensitivity of 0.7837 pm/µε, and a nonlinear sensitivity according to a quadratic function for peak power variation are also observed.


Sign in / Sign up

Export Citation Format

Share Document