Attack localization task allocation in wireless sensor networks based on multi-objective binary particle swarm optimization

2018 ◽  
Vol 112 ◽  
pp. 29-40 ◽  
Author(s):  
Ziwen Sun ◽  
Yuhui Liu ◽  
Li Tao
2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Zhen-Lun Yang ◽  
Angus Wu ◽  
Hua-Qing Min

The deployment problem of wireless sensor networks for real time oilfield monitoring is studied. As a characteristic of oilfield monitoring system, all sensor nodes have to be installed on designated spots. For the energy efficiency, some relay nodes and sink nodes are deployed as a delivery subsystem. The major concern of the construction of the monitoring system is the optimum placement of data delivery subsystem to ensure the full connectivity of the sensor nodes while keeping the construction cost as low as possible, with least construction and maintenance complexity. Due to the complicated landform of oilfields, in general, it is rather difficult to satisfy these requirements simultaneously. The deployment problem is formulated as a constrained multiobjective optimization problem and solved through a novel scheme based on multiobjective discrete binary particle swarm optimization to produce optimal solutions from the minimum financial cost to the minimum complexity of construction and maintenance. Simulation results validated that comparing to the three existing state-of-the-art algorithms, that is, NSGA-II, JGGA, and SPEA2, the proposed scheme is superior in locating the Pareto-optimal front and maintaining the diversity of the solutions, thus providing superior candidate solutions for the design of real time monitoring systems in oilfields.


2012 ◽  
Vol 9 (4) ◽  
pp. 1553-1576 ◽  
Author(s):  
Ling Wang ◽  
Wei Ye ◽  
Haikuan Wang ◽  
Xiping Fu ◽  
Minrui Fei ◽  
...  

Industrial Wireless Sensor Networks (IWSNs), a novel technique in industry control, can greatly reduce the cost of measurement and control and improve productive efficiency. Different from Wireless Sensor Networks (WSNs) in non-industrial applications, the communication reliability of IWSNs has to be guaranteed as the real-time field data need to be transmitted to the control system through IWSNs. Obviously, the network architecture has a significant influence on the performance of IWSNs, and therefore this paper investigates the optimal node placement problem of IWSNs to ensure the network reliability and reduce the cost. To solve this problem, a node placement model of IWSNs is developed and formulized in which the reliability, the setup cost, the maintenance cost and the scalability of the system are taken into account. Then an improved adaptive mutation probability binary particle swarm optimization algorithm (AMPBPSO) is proposed for searching out the best placement scheme. After the verification of the model and optimization algorithm on the benchmark problem, the presented AMPBPSO and the optimization model are used to solve various large-scale optimal sensor placement problems. The experimental results show that AMPBPSO is effective to tackle IWSNs node placement problems and outperforms discrete binary Particle Swarm Optimization (DBPSO) and standard Genetic Algorithm (GA) in terms of search accuracy and the convergence speed with the guaranteed network reliability.


Sign in / Sign up

Export Citation Format

Share Document