An Improved Energy-Aware Cluster Heads Selection Method for Wireless Sensor Networks Based on K-means and Binary Particle Swarm Optimization

Author(s):  
Qianqian Pan ◽  
Qingjian Ni ◽  
Huimin Du ◽  
Yiyun Yao ◽  
Qing Lv
2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Zhen-Lun Yang ◽  
Angus Wu ◽  
Hua-Qing Min

The deployment problem of wireless sensor networks for real time oilfield monitoring is studied. As a characteristic of oilfield monitoring system, all sensor nodes have to be installed on designated spots. For the energy efficiency, some relay nodes and sink nodes are deployed as a delivery subsystem. The major concern of the construction of the monitoring system is the optimum placement of data delivery subsystem to ensure the full connectivity of the sensor nodes while keeping the construction cost as low as possible, with least construction and maintenance complexity. Due to the complicated landform of oilfields, in general, it is rather difficult to satisfy these requirements simultaneously. The deployment problem is formulated as a constrained multiobjective optimization problem and solved through a novel scheme based on multiobjective discrete binary particle swarm optimization to produce optimal solutions from the minimum financial cost to the minimum complexity of construction and maintenance. Simulation results validated that comparing to the three existing state-of-the-art algorithms, that is, NSGA-II, JGGA, and SPEA2, the proposed scheme is superior in locating the Pareto-optimal front and maintaining the diversity of the solutions, thus providing superior candidate solutions for the design of real time monitoring systems in oilfields.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Dexin Ma ◽  
Pengmin Xu

Energy efficient utilization is an important criteria and factor that affects the design of wireless sensor networks (WSNs). In this literature, we propose an energy distance aware clustering protocol with Dual Cluster Heads using Niching Particle Swarm Optimization (DCH-NPSO). The protocol selects two cluster heads in each cluster, the Master Cluster Head (MCH) and the Slave Cluster Head (SCH), and the selection needs to consider the network state information carefully and deliberately. Simulation results show that the protocol we proposed can balance the energy dissipation and extend the network lifetime effectively.


Sign in / Sign up

Export Citation Format

Share Document