Characterization of refracture orientation in poorly propped fractured wells by pressure transient analysis: Model, pitfall, and application

2020 ◽  
Vol 79 ◽  
pp. 103332 ◽  
Author(s):  
Le Luo ◽  
Shiqing Cheng ◽  
John Lee
2021 ◽  
pp. 1-20
Author(s):  
Cuiqiao Xing ◽  
Hongjun Yin ◽  
Hongfei Yuan ◽  
Jing Fu ◽  
Guohan Xu

Abstract Fractured vuggy carbonate reservoirs are highly heterogeneous and non-continuous, and contains not only erosion pores and fractures but also the vugs. Unfortunately, the current well test model cannot be used to analyze fractured-vuggy carbonate reservoirs, due to the limitations of actual geological characteristics. To solve the above-mentioned problem, a pressure transient analysis model for fracture-cavity carbonate reservoir with radial composite reservoir that the series multi-sacle fractures and caves exist and dual-porosity medium (fracture and erosion pore) is established in this paper, which is suitable for fractured vuggy reservoirs. Laplace transformation is used to alter and solve the mathematical model. The main fractures' linear flow and the radial flow of caves drainage area are solved by coupling. The pressure-transient curves of the bottomhole have been obtained with the numerical inversion algorithms. The typical curves for well test model which has been established are drawn, and flow periods are analyzed. The sensitivity analysis for different parameters is analyzed. The variation characteristic of typical curves is by the theoretical analysis. With the increasing of fracture length, the time of linear flow is increased. While the cave radius is the bigger, the convex and concave of the curve is the larger. As a field example, actual test data is analyzed by the established model. An efficient well test analysis model is developed, and it can be used to interpret the actual pressure data for fracture-cavity carbonate reservoirs.


2013 ◽  
Vol 446-447 ◽  
pp. 479-485
Author(s):  
De Tang Lu ◽  
Qing Xie ◽  
Cong Niu ◽  
Lei Wang

Most current pressure transient analysis techniques of hydraulically fractured wells are based on the fully penetrating assumption, which assumes equal thickness of hydraulic fracture and the formation. However, field application show that the fractures thickness can be shorter than the thickness of formation, which leads to vertical flow into the fracture. Thus applying the thickness equality assumption of current well test models to a partial penetrating fracture may give contradictory result. Further, there are very few studies concerning pressure transient analysis of partial penetrated wells. So it is important to develop analysis model and procedure to this type of fracture. In this paper, we presented an analytical model for partially penetrating hydraulic fracture in isotropic systems, along with the assumption that fracture is finite conductive. This model is then applied in the analysis of field production data, which verified validity of this new model.


2019 ◽  
Vol 22 (11) ◽  
pp. 1351-1370 ◽  
Author(s):  
Yizhao Wan ◽  
Nengyou Wu ◽  
Changling Liu ◽  
Qiang Chen ◽  
Yuewu Liu

Sign in / Sign up

Export Citation Format

Share Document