water injection
Recently Published Documents


TOTAL DOCUMENTS

3244
(FIVE YEARS 1012)

H-INDEX

49
(FIVE YEARS 11)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122922
Author(s):  
Tiancheng Zhang ◽  
Quanle Zou ◽  
Xueqi Jia ◽  
Ting Liu ◽  
Zebiao Jiang ◽  
...  

Author(s):  
Gang Zhou ◽  
Cunmin Wang ◽  
Rulin Liu ◽  
Shuailong Li ◽  
Qingtao Zhang ◽  
...  

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122233
Author(s):  
Gang Wang ◽  
Enmao Wang ◽  
Qiming Huang ◽  
Shengpeng Li

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122213
Author(s):  
Xiuxiu Sun ◽  
Junjie Ning ◽  
Xingyu Liang ◽  
Guoxi Jing ◽  
Yong Chen ◽  
...  

2022 ◽  
Author(s):  
Erfan Mustafa Al lawe ◽  
Adnan Humaidan ◽  
Afolabi Amodu ◽  
Mike Parker ◽  
Oscar Alvarado ◽  
...  

Abstract Zubair formation in West Qurna field, is one of the largest prolific reservoirs comprising of oil bearing sandstone layers interbedded with shale sequences. An average productivity index of 6 STB/D/psi is observed without any types of stimulation treatment. As the reservoir pressure declines from production, a peripheral water injection strategy was planned in both flanks of the reservoir to enhance the existing wells production deliverability. The peripheral injection program was initiated by drilling several injectors in the west flank. Well A1 was the first injector drilled and its reservoir pressure indicated good communication with the up-dip production wells. An injection test was conducted, revealing an estimated injectivity index of 0.06 STB//D/psi. Candidate well was then re-perforated and stimulated with HF/HCl mud acid, however no significant improvement in injectivity was observed due to the complex reservoir mineralogy and heterogeneity associated to the different targeted layers. An extended high-pressure injection test was performed achieving an injectivity index of 0.29 STB/D/psi at 4500 psi. As this performance was sub-optimal, a proppant fracture was proposed to achieve an optimal injection rate. A reservoir-centric fracture model was built, using the petrophysical and geo-mechanical properties from the Zubair formation, with the objective of optimizing the perforation cluster, fracture placement and injectivity performance. A wellhead isolation tool was utilized as wellhead rating was not able to withstand the fracture model surface pressure; downhole gauges were also installed to provide an accurate analysis of the pressure trends. The job commenced with a brine injection test to determine the base-line injectivity profile. The tubing volume was then displaced with a linear gel to perform a step-rate / step-down test. The analysis of the step-rate test revealed the fracture extension pressure, which was set as the maximum allowable injection pressure when the well is put on continuous injection. The step-down test showed significant near wellbore tortuosity with negligible perforation friction. A fracture fluid calibration test was then performed to validate the integrated model leak-off profile, fracture gradient and young’s modulus; via a coupled pressure fall-off and temperature log analysis. Based on the fluid efficiency, the pad volume was adjusted to achieve a tip screen-out. The job was successfully pumped and tip screen-out was achieved after pumping over ~90% of the planned proppant volume. A 7 days post-frac extended injection test was then conducted, achieving an injection rate of 12.5 KBWD at 1300 psi with an injectivity index of 4.2 STB/D/psi. These results proved that the implementation of a reservoir-centric Proppant Fracture treatment, can drastically improve the water injection strategy and field deliverability performance even in good quality rock formations. This first integrated fracture model and water injection field strategy, represents a building platform for further field development optimization plans in Southern Iraq.


Geophysics ◽  
2022 ◽  
pp. 1-79
Author(s):  
Mutlaq Alarouj ◽  
Matthew David Jackson

Monitoring water movement toward production wells through downhole measurements of self-potential (SP) was a promising new technology. However, there were uncertainties about its applicability in heterogeneous, multilayered reservoirs. Using numerical modeling, we investigated the likely magnitude and behavior of SP during oil production supported by water injection in two different models of such reservoirs. We found that the magnitude of the SP signal that would be measured along a production well increased as water approached the well, exceeding an assumed noise level of 0.1 mV before water breakthrough. We also found that, in the reservoir models tested, the maximum value of SP at the well skewed toward the fastest waterfront before water breakthrough. The trend of SP increasing at the well with time, together with the shape of the SP profile, were the prime indicators used to investigate water movement. In the reservoir models tested, before water breakthrough the fastest approaching waterfront could be detected approximately 20 m away from the well. However, subsequent waterfronts approaching the well in other layers could not be detected before breakthrough. The effect of these later waterfronts on the SP profile at the well was only detectable at breakthrough. We attributed this to the fact that the SP generated in these layers is masked by the high SP created by the fastest waterfront. Our findings emphasized the importance of an enhanced understanding of reservoir geology and rock electrical properties for better prediction and interpretation of SP.


Athenea ◽  
2022 ◽  
Vol 2 (6) ◽  
pp. 28-42
Author(s):  
Alberto Echegaray

This article presents an approach to the problem of ceramic types adhesion, applying energy and matter balance to the established control volume (cyclone) with the use of mathematical formulas that are interrelated to develop mathematical calculations and establish a new mathematical model The first results are obtained by operating the energy balance considering the collision of particles, using the principle of conservation of energy, the first law of thermodynamics, in order to obtain information that allows describing the phenomena of thermoplasticity and creep, in the formation of adhesions, from a physicochemical and kinetic point of view, which will serve as the basis for understanding their effect. As a result, an energy value of 660 kJ / mol was obtained, sufficient energy to start the transformation of the solid particles to a state of thermo-flow that allows the adhesion phenomenon to be started. Keywords: Adhesion, energy balance, cyclones, elutriation, eutectoid, fayalite, thermoplasticity. References [1]O. Bustamante. “Dissipation of mechanical energy in the discharge of a hydrocyclone”. (Dyna, Ed.) The network of Scientific Journals of Latin America, the Caribbean, Spain, and Portugal, vol. 80 (181), Pages 136-143, 2013. [2]K.Petersen, P.Aldrich, and D.Van.,”Hydrocyclone underflow monitoring using image processing methods. Minerals Engineering”, pp. 301-315,1996. [3]M. Farghaly,” Controlled Wash Water Injection to the hydrocyclone underflow” [Ph.D. Thesis]. Erlangen, FAU, 2009. [4]M, Schneider, and T. Neesse. “Overflow-control system for a hydrocyclone battery. Int. J. Miner. Process". 74, pp. 339 – 343, 2004. [5]J.Bergström., “Flow field and fiber fractionation studies in hydro cyclones” [Ph.D. Thesis] Stockholm, Sweden, Royal Institute of Technology, 2006. [6]C, Liu, L. Wang, and Q. Lui., “Investigation of energy loss mechanisms in cyclone separators”. Chemical Engineering Technology 28, pp. 1182-1190, 2005. [7]O.Dam. & E.Jeffes.,.”Model for detailed assessment of chemical composition of reduced iron ores from single measurement”. Ironmaking and Steelmaking, 1987. [8]E. Ringdalen., “Softening and melting of SiO2 an important parameter for reactions with quartz in Si production” pp 43-44, 2016.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Fangfang Zhang

Current energy to “release” after accumulating + first for the mechanism of rock bursts occurred in analysis of the strategy is accepted by many scholars, based on the existing means of prevention and control of percussive ground pressure, from the angle of the prevention and control of design of the mechanism of impact ground pressure energy regulation, namely, “weakened after the first release +” softened water injection measures and “lead after the first release +” drilling pressure relief measures, for the study of mining under the action of a strong shock tendentiousness rock energy regulatory mechanism; based on rock mechanics experiment, the analysis under different modification measures should be variant energy storage mechanisms of induced damage evolution of rock energy. The mechanism of energy evolution in the modification of strong bursting liability roof rock is revealed. The results show that different modification regulation measures can effectively change the physical and mechanical parameters of target rock samples and realize “hard rock softening or soft rock hardening.” Samples under different modification measures are classified as initial consolidation stage, elastic stage, stage of plastic deformation, yield failure stage, and late stage, the energy evolution is roughly the same as the sample complete natural condition, but the yield failure stage and the destruction of late stage have an obvious difference, which provides favorable conditions for impact ground pressure to prevent. With the help of three characteristic energy indexes of total strain, elastic strain energy, and dissipative strain energy of rock samples, the evolution law of energy indexes under different modification control measures is analyzed. The index of elastic energy consumption ratio is introduced as a precursor feature of rock instability and failure, which indicates the rock impact tendency to a certain extent. The energy regulation mechanisms of “first release+then weakening” water injection softening measures and “first release+then guidance” drilling pressure relief measures are explained theoretically, respectively. However, we should focus on the defects of the corresponding control measures and finally try to make a reasonable combination of different modification measures. Finally, the gradient pressure relief scheme should be considered in order to avoid large stress drop caused by large-scale pressure relief in the region and aggravate the instability of rock mass. The instability of rock mass is further aggravated.


Sign in / Sign up

Export Citation Format

Share Document