Transcutaneous spinal cord stimulation (TSDCS) in multiple sclerosis

2021 ◽  
Vol 429 ◽  
pp. 118130
Author(s):  
Simona Mrakic-Sposta ◽  
Roberta Ferrucci ◽  
Alessandra Vezzoli ◽  
Stafno Floro ◽  
Maurizio Vergari ◽  
...  
2021 ◽  
Vol 11 (4) ◽  
pp. 472
Author(s):  
Ursula S. Hofstoetter ◽  
Brigitta Freundl ◽  
Peter Lackner ◽  
Heinrich Binder

Gait dysfunction and spasticity are common debilitating consequences of multiple sclerosis (MS). Improvements of these motor impairments by lumbar transcutaneous spinal cord stimulation (tSCS) have been demonstrated in spinal cord injury. Here, we explored for the first time the motor effects of lumbar tSCS applied at 50 Hz for 30 min in 16 individuals with MS and investigated their temporal persistence post-intervention. We used a comprehensive protocol assessing walking ability, different presentations of spasticity, standing ability, manual dexterity, and trunk control. Walking ability, including walking speed and endurance, was significantly improved for two hours beyond the intervention and returned to baseline after 24 h. Muscle spasms, clonus duration, and exaggerated stretch reflexes were reduced for two hours, and clinically assessed lower-extremity muscle hypertonia remained at improved levels for 24 h post-intervention. Further, postural sway during normal standing with eyes open was decreased for two hours. No changes were detected in manual dexterity and trunk control. Our results suggest that transcutaneous lumbar SCS can serve as a clinically accessible method without known side effects that holds the potential for substantial clinical benefit across the disability spectrum of MS.


2013 ◽  
Vol 37 (2) ◽  
pp. 202-211 ◽  
Author(s):  
Ursula S. Hofstoetter ◽  
William B. McKay ◽  
Keith E. Tansey ◽  
Winfried Mayr ◽  
Helmut Kern ◽  
...  

Author(s):  
Roberto M. de Freitas ◽  
Atsushi Sasaki ◽  
Dimitry G. Sayenko ◽  
Yohei Masugi ◽  
Taishin Nomura ◽  
...  

Cervical transcutaneous spinal cord stimulation (tSCS) efficacy for rehabilitation of upper-limb motor function was suggested to depend on recruitment of Ia afferents. However, selectivity and excitability of motor activation with different electrode configurations remains unclear. In this study, activation of upper-limb motor pools was examined with different cathode and anode configurations during cervical tSCS in 10 able-bodied individuals. Muscle responses were measured from six upper-limb muscles simultaneously. First, post-activation depression was confirmed with tSCS paired pulses (50 ms interval) for each cathode configuration (C6, C7, and T1 vertebral levels), with anode on the anterior neck. Selectivity and excitability of activation of the upper-limb motor pools were examined by comparing the recruitment curves (10-100 mA) of first evoked responses across muscles and cathode configurations. Our results showed that hand muscles were preferentially activated when the cathode was placed over T1 compared to the other vertebral levels, while there was no selectivity for proximal arm muscles. Furthermore, higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles, suggesting different excitability thresholds between muscles. In a separate protocol, responses were compared between anode configurations (anterior neck, shoulders, iliac crests, and back), with one selected cathode configuration. The level of discomfort was also assessed. Largest muscle responses were elicited with the anode configuration over the anterior neck, while there were no differences in the discomfort. Our results therefore inform methodological considerations for electrode configuration to help optimize recruitment of Ia afferents during cervical tSCS.


1981 ◽  
Vol 44 (1-3) ◽  
pp. 55-61
Author(s):  
Albert W. Cook ◽  
J. Kenneth Taylor ◽  
Florence Nidzgorski

Sign in / Sign up

Export Citation Format

Share Document