spinal cord stimulation
Recently Published Documents


TOTAL DOCUMENTS

3153
(FIVE YEARS 726)

H-INDEX

91
(FIVE YEARS 13)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 501
Author(s):  
Seunghyeon Yun ◽  
Chin Su Koh ◽  
Jungmin Seo ◽  
Shinyong Shim ◽  
Minkyung Park ◽  
...  

Spinal cord stimulation is a therapy to treat the severe neuropathic pain by suppressing the pain signal via electrical stimulation of the spinal cord. The conventional metal packaged and battery-operated implantable pulse generator (IPG) produces electrical pulses to stimulate the spinal cord. Despite its stable operation after implantation, the implantation site is limited due to its bulky size and heavy weight. Wireless communications including wireless power charging is also restricted, which is mainly attributed to the electromagnetic shielding of the metal package. To overcome these limitations, here, we developed a fully implantable miniaturized spinal cord stimulator based on a biocompatible liquid crystal polymer (LCP). The fabrication of electrode arrays in the LCP substrate and monolithically encapsulating the circuitries using LCP packaging reduces the weight (0.4 g) and the size (the width, length, and thickness are 25.3, 9.3, and 1.9 mm, respectively). An inductive link was utilized to wirelessly transfer the power and the data to implanted circuitries to generate the stimulus pulse. Prior to implantation of the device, operation of the pulse generator was evaluated, and characteristics of stimulation electrode such as an electrochemical impedance spectroscopy (EIS) were measured. The LCP-based spinal cord stimulator was implanted into the spared nerve injury rat model. The degree of pain suppression upon spinal cord stimulation was assessed via the Von Frey test where the mechanical stimulation threshold was evaluated by monitoring the paw withdrawal responses. With no spinal cord stimulation, the mechanical stimulation threshold was observed as 1.47 ± 0.623 g, whereas the stimulation threshold was increased to 12.7 ± 4.00 g after spinal cord stimulation, confirming the efficacy of pain suppression via electrical stimulation of the spinal cord. This LCP-based spinal cord stimulator opens new avenues for the development of a miniaturized but still effective spinal cord stimulator.


2022 ◽  
Vol 11 (1) ◽  
pp. 272
Author(s):  
Philippe Rigoard ◽  
Amine Ounajim ◽  
Lisa Goudman ◽  
Tania Banor ◽  
France Héroux ◽  
...  

While paresthesia-based Spinal Cord Stimulation (SCS) has been proven effective as treatment for chronic neuropathic pain, its initial benefits may lead to the development of “Failed SCS Syndrome’ (FSCSS) defined as decrease over time related to Loss of Efficacy (LoE) with or without Loss of Coverage (LoC). Development of technologies associating new paresthesia-free stimulation waveforms and implanted pulse generator adapters provide opportunities to manage patients with LoE. The main goal of our study was to investigate salvage procedures, through neurostimulation adapters, in patients already implanted with SCS and experiencing LoE. We retrospectively analyzed a cohort of patients who were offered new SCS programs/waveforms through an implanted adapter between 2018 and 2021. Patients were evaluated before and at 1-, 3-, 6- and 12-month follow-ups. Outcomes included pain intensity rating with a Visual Analog Scale (VAS), pain/coverage mappings and stimulation preferences. Last follow-up evaluations (N = 27) showed significant improvement in VAS (p = 0.0001), ODI (p = 0.021) and quality of life (p = 0.023). In the 11/27 patients with LoC, SCS efficacy on pain intensity (36.89%) was accompanied via paresthesia coverage recovery (55.57%) and pain surface decrease (47.01%). At 12-month follow-up, 81.3% preferred to keep tonic stimulation in their waveform portfolio. SCS conversion using adapters appears promising as a salvage solution, with an emphasis on paresthesia recapturing enabled via spatial retargeting. In light of these results, adapters could be integrated in SCS rescue algorithms or should be considered in SCS rescue.


Author(s):  
Piedade G. S ◽  
Gillner S. ◽  
Slotty P. J. ◽  
Vesper J

Abstract Background After the surge of burst stimulation, different waveforms were developed to optimize results in spinal cord stimulation. Studies have shown higher responder rates for multiwave therapy, but since the launch of such multiwave systems, little is known about the patients’ preference regarding waveforms in the long-term follow-up. No study connected particular waveforms to specific pain etiologies or required stimulation parameters so far. Method Thirty-four patients with refractory chronic neuropathic pain were treated with spinal cord stimulation systems providing multiwave therapy between September 2018 and October 2019. Patients with a follow-up of at least 6 months were selected; 10 subjects were excluded due to revision surgery, infection, and loss to follow-up. Data regarding pain intensity and preferred waveform for the trial, the implantation, 3-month and 6-month follow-up were recorded. Results During the trial phase, 10 patients (43.5%) achieved significant pain relief using tonic stimulation, 5 using burst (21.7%), 3 using microburst (13.0%), and 4 using a combination of tonic and microburst (17.4%). One single patient preferred Contour stimulation during the trial. After 3 months, 6 patients preferred microburst (25%), 6 preferred tonic (25%), 5 used a combination of tonic and microburst (20.8%), and 5 patients used burst (20.8%). After 6 months, similar results were obtained. Contour and Whisper were used in complex cases failing to other waveforms. Conclusions Tonic stimulation, isolated or in combination, remains an important component in spinal cord stimulation, being used by almost half of the patients. Over time, the usage of microburst increased considerably. Whisper and Contour, although battery-consuming, are good salvage options in complex cases.


Author(s):  
Jong-Ho Ha ◽  
Ryoong Huh ◽  
Shin-Gyeom Kim ◽  
Soo-Bin Im ◽  
Je Hoon Jeong ◽  
...  

2022 ◽  
Vol 2 ◽  
Author(s):  
Candace Tefertiller ◽  
Meghan Rozwod ◽  
Eric VandeGriend ◽  
Patricia Bartelt ◽  
Mitch Sevigny ◽  
...  

Objective: To evaluate the impact of using transcutaneous electrical spinal cord stimulation (TSCSTSCS) on upper and lower extremity function in individuals with chronic spinal cord injury (SCI).Design: Prospective case series.Setting: SCI specific rehabilitation hospital.Participants: A convenience sample (N = 7) of individuals with tetraplegia who had previously been discharged from outpatient therapy due to a plateau in progress.Interventions: Individuals participated in 60 min of upper extremity (UE) functional task-specific practice (FTP) in combination with TSCS and 60 min of locomotor training in combination with TSCS 5x/week.Main Outcome Measures: The primary outcome for this analysis was the Capabilities of Upper Extremity Test (CUE-T). Secondary outcomes include UE motor score (UEMS), LE motor score (LEMS), sensation (light touch and pin prick), Nine-Hole Peg Test, 10 meter walk test, 6 min walk test, and 5 min stand test.Results: Seven individuals (four motor complete; three motor incomplete) completed 20–80 sessions UE and LE training augmented with TSCS and without any serious adverse events. Improvements were reported on the CUE-T in all seven individuals. Two individuals improved their ASIA impairment scale (AIS) classification (B to C; C to D) and two individuals improved their neurologic level of injury by one level (C4–C5; C5–C6). Sensation improved in five individuals and all four who started out with motor complete SCIs were able to voluntarily activate their LEs on command in the presence of stimulation.Conclusion: Individuals with chronic SCI who had previously demonstrated a plateau in function after an intensive outpatient therapy program were able to improve in a variety of UE and LE outcomes in response to TSCS without any adverse events. This was a small pilot study and future fully powered studies with comparative interventions need to be completed to assess efficacy.


2022 ◽  
pp. 191-196
Author(s):  
Tessa Harland ◽  
Breanna L. Sheldon ◽  
Huy Q. Truong ◽  
Julie G. Pilitsis

2022 ◽  
pp. 545-554
Author(s):  
Timothy Sowder ◽  
Usman Latif ◽  
Edward Braun ◽  
Dawood Sayed

Sign in / Sign up

Export Citation Format

Share Document