scholarly journals Multiplicities and Plancherel formula for the space of nondegenerate Hermitian matrices

Author(s):  
Raphaël Beuzart-Plessis
2014 ◽  
Vol 10 (02) ◽  
pp. 513-558
Author(s):  
YUMIKO HIRONAKA ◽  
YASUSHI KOMORI

We investigate the space X of unitary hermitian matrices over 𝔭-adic fields through spherical functions. First we consider Cartan decomposition of X, and give precise representatives for fields with odd residual characteristic, i.e. 2 ∉ 𝔭. From Sec. 2.2 till the end of Sec. 4, we assume odd residual characteristic, and give explicit formulas of typical spherical functions on X, where Hall–Littlewood symmetric polynomials of type Cn appear as a main term, parametrization of all the spherical functions. By spherical Fourier transform, we show that the Schwartz space [Formula: see text] is a free Hecke algebra [Formula: see text]-module of rank 2n, where 2n is the size of matrices in X, and give the explicit Plancherel formula on [Formula: see text].


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 250
Author(s):  
Frédéric Barbaresco ◽  
Jean-Pierre Gazeau

For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups (by associating coherent states to group representations that are square integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the study of mathematics of heat. Modern research on Heat equation explores geometric extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat equation for a general volume form that not necessarily coincides with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics, for example, the Lie groups thermodynamics.


Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Andreas Blommaert ◽  
Thomas G. Mertens ◽  
Henri Verschelde

Abstract It was proven recently that JT gravity can be defined as an ensemble of L × L Hermitian matrices. We point out that the eigenvalues of the matrix correspond in JT gravity to FZZT-type boundaries on which spacetimes can end. We then investigate an ensemble of matrices with 1 ≪ N ≪ L eigenvalues held fixed. This corresponds to a version of JT gravity which includes N FZZT type boundaries in the path integral contour and which is found to emulate a discrete quantum chaotic system. In particular this version of JT gravity can capture the behavior of finite-volume holographic correlators at late times, including erratic oscillations.


1970 ◽  
Vol 11 (1) ◽  
pp. 81-83 ◽  
Author(s):  
Yik-Hoi Au-Yeung

We denote by F the field R of real numbers, the field C of complex numbers, or the skew field H of real quaternions, and by Fn an n dimensional left vector space over F. If A is a matrix with elements in F, we denote by A* its conjugate transpose. In all three cases of F, an n × n matrix A is said to be hermitian if A = A*, and we say that two n × n hermitian matrices A and B with elements in F can be diagonalized simultaneously if there exists a non singular matrix U with elements in F such that UAU* and UBU* are diagonal matrices. We shall regard a vector u ∈ Fn as a l × n matrix and identify a 1 × 1 matrix with its single element, and we shall denote by diag {A1, …, Am} a diagonal block matrix with the square matrices A1, …, Am lying on its diagonal.


2004 ◽  
Vol 289 (1-3) ◽  
pp. 119-127 ◽  
Author(s):  
Béla Bollobás ◽  
Vladimir Nikiforov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document