Characterisation of soot particle size distribution through population balance approach and soot diagnostic techniques for a buoyant non-premixed flame

2020 ◽  
Vol 93 (1) ◽  
pp. 112-128 ◽  
Author(s):  
Cheng Wang ◽  
Anthony Chun Yin Yuen ◽  
Qing Nian Chan ◽  
Timothy Bo Yuan Chen ◽  
Wei Yang ◽  
...  
2018 ◽  
Vol 193 ◽  
pp. 54-60 ◽  
Author(s):  
Baiyang Lin ◽  
Hao Gu ◽  
Hong Ni ◽  
Bin Guan ◽  
Zhongzhao Li ◽  
...  

2014 ◽  
Vol 22 (02) ◽  
pp. 1440001 ◽  
Author(s):  
AIXIANG XU ◽  
ZHIQIANG LIU ◽  
TENGLEI ZHAO ◽  
XIAOXIAO WANG

Particle size distribution and number of ice crystals have a great influence on the flow and heat transfer performance of ice slurry. A population balance model (PBM) containing population and mass balances has been built to simulate numerically the development of ice particle size distribution during adiabatic ice slurry storage. The model assumes a homogeneously mixed and long-term storage tank in which the effect of breakage and aggregation between ice crystals was considered. For solving the population balance equations (PBEs) in the PBM, a semi-discrete finite volume scheme was applied. Finally, the effect of breakage and aggregation on development of ice particle size distribution was analyzed respectively. The results show that both breakage and aggregation are the two important effects on the particle size distribution and evolution of ice particle during storage, but they have opposite effect on the development of ice crystal size. In storage, breakage and aggregation have almost equivalent effect in the initial phase, but aggregation has dominant effect at last. The PBM results are in good agreement with experimental results by Pronk et al. [Effect of long-term ice slurry storage on crystal size distribution, 5th Workshop on Ice Slurries of the IIR (2002), pp. 151–160]. Therefore, the PBM presented in this paper is able to predict the development of particle size distribution during ice slurry storage.


Sign in / Sign up

Export Citation Format

Share Document