hydrogen addition
Recently Published Documents





Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122244
Andisheh Khanehzar ◽  
Francisco Cepeda ◽  
Seth B. Dworkin

2021 ◽  
Vol 13 (24) ◽  
pp. 13577
Robert Wojtowicz ◽  
Jacek Jaworski

This article presents the results of the testing of the addition of a hydrogen-to-nitrogen-rich natural gas of the Lw group and its influence on the operation of selected gas-fired domestic appliances. The tests were performed on appliances used for the preparation of meals and hot water production for hygienic and heating purposes. The characteristics of the tested gas appliances are also presented. The burners and their controllers, with which the tested appliances were equipped, were adapted for the combustion of Lw natural gas. The tested appliances reflected the most popular designs for domestic gas appliances in their group, used both in Poland and in other European countries. The tested appliances were supplied with nitrogen-rich natural gas of the Lw group, and a mixture of this gas with hydrogen at 13.2% content. The article presents the approximate percentage compositions of the gases used during the tests and their energy parameters. The research was focused on checking the following operating parameters and the safety of the tested appliances: the rated heat input, thermal efficiency, combustion quality, ignition, flame stability, and transfer. The article contains an analysis of the test results, referring, in detail, to the issue of decreasing the heat input of the appliances by lowering the energy parameters of the nitrogen-rich natural gas of the Lw group mixture with a hydrogen addition, and how it influenced the thermal efficiency achieved by the appliances. The conclusions contain an explanation regarding, among other things, how the design of an appliance influences the thermal efficiency achieved by it in relation to the heat input decrease. In the conclusions, on the basis of the research results, answers have been provided to the following questions: (1) Whether the hydrogen addition to the nitrogen-rich natural gas of the Lw group will influence the safe and proper operation of domestic gas appliances; (2) What hydrogen percentage can be added to the nitrogen-rich natural gas of the Lw group in order for the appliances adapted for combusting it to operate safely and effectively, without the need for modifying them?

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7556
Maria Mitu ◽  
Domnina Razus ◽  
Volkmar Schroeder

The flammable hydrogen-blended methane–air and natural gas–air mixtures raise specific safety and environmental issues in the industry and transportation; therefore, their explosion characteristics such as the explosion limits, explosion pressures, and rates of pressure rise have significant importance from a safety point of view. At the same time, the laminar burning velocities are the most useful parameters for practical applications and in basic studies for the validation of reaction mechanisms and modeling turbulent combustion. In the present study, an experimental and numerical study of the effect of hydrogen addition on the laminar burning velocity (LBV) of methane–air and natural gas–air mixtures was conducted, using mixtures with equivalence ratios within 0.90 and 1.30 and various hydrogen fractions rH within 0.0 and 0.5. The experiments were performed in a 14 L spherical vessel with central ignition at ambient initial conditions. The LBVs were calculated from p(t) data, determined in accordance with EN 15967, by using only the early stage of flame propagation. The results show that hydrogen addition determines an increase in LBV for all examined binary flammable mixtures. The LBV variation versus the fraction of added hydrogen, rH, follows a linear trend only at moderate hydrogen fractions. The further increase in rH results in a stronger variation in LBV, as shown by both experimental and computed LBVs. Hydrogen addition significantly changes the thermal diffusivity of flammable CH4–air or NG–air mixtures, the rate of heat release, and the concentration of active radical species in the flame front and contribute, thus, to LBV variation.

Fuel ◽  
2021 ◽  
pp. 122506
Yu Wang ◽  
Junfeng Wang ◽  
Jianfeng Pan ◽  
Qingbo Lu ◽  
Feiyang Li ◽  

Sign in / Sign up

Export Citation Format

Share Document