Coupling fraction and relocking process of the Longmenshan Fault Zone following the 2008 Mw7.9 Wenchuan earthquake

2020 ◽  
Vol 137 ◽  
pp. 101730
Author(s):  
Jing Zhao ◽  
Jinwei Ren ◽  
Jie Liu ◽  
Zaisen Jiang ◽  
Xiaoxia Liu ◽  
...  
2009 ◽  
Vol 52 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Jian-She LEI ◽  
Da-Peng ZHAO ◽  
Jin-Rong SU ◽  
Guang-Wei ZHANG ◽  
Feng Li

2018 ◽  
Vol 63 (19) ◽  
pp. 1906-1916 ◽  
Author(s):  
Jianshe Lei ◽  
Dapeng Zhao ◽  
Xiwei Xu ◽  
Mofei Du ◽  
Guangwei Zhang ◽  
...  

2020 ◽  
Vol 222 (2) ◽  
pp. 1352-1362
Author(s):  
Tao Zhu ◽  
Yan Zhan ◽  
Martyn Unsworth ◽  
Guoze Zhao ◽  
Xiangyu Sun

SUMMARY Estimation of lithospheric viscosity remains challenging, especially for variations with spatial scales less than 100 km. Some recent studies have developed a method to determine viscosity structure from electrical conductivity models determined from magnetotelluric (MT) data. This method was initially applied to the extensional transition zone from the Great Basin to Colorado Plateau. Here, we use this approach to infer the effective lithospheric viscosity in a convergent setting by using an MT profile that crosses the eastern margin of the Tibetan Plateau. The profile extends from the Songpan-Ganzi block, crosses the 2008 Wenchuan earthquake epicentre region and ends in the Sichuan basin. The preferred viscosity structure is characterized by the middle-lower crustal viscosities in the range 2.42 × 1018 to 2.69 × 1021 Pa s below the Songpan-Ganzi block. In the Longmenshan fault zone and 2008 Wenchuan Ms8.0 earthquake area, the crustal viscosity is higher and in the range 4.32 × 1018 to 5.10 × 1021 Pa s with significant small-scale (<100 km) lateral variations. The MT-derived viscosities are consistent with previous regional-scale estimates but reveal the viscosity structure in more detail. The preferred geodynamic model can explain both the crustal deformation velocity and the small-scale lateral variations of surface topography. It implies that the crustal deformation is driven by mantle flow that results in a weak coupling of the upper and middle-lower crust beneath the eastern Tibetan Plateau. The inferred viscosity structure may help further understand the earthquake mechanisms in the Longmenshan fault zone.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Haiou Li ◽  
Xiwei Xu ◽  
Wentao Ma ◽  
Ronghua Xie ◽  
Jingli Yuan ◽  
...  

Three-dimensional P wave velocity models under the Zipingpu reservoir in Longmenshan fault zone are obtained with a resolution of 2 km in the horizontal direction and 1 km in depth. We used a total of 8589 P wave arrival times from 1014 local earthquakes recorded by both the Zipingpu reservoir network and temporary stations deployed in the area. The 3-D velocity images at shallow depth show the low-velocity regions have strong correlation with the surface trace of the Zipingpu reservoir. According to the extension of those low-velocity regions, the infiltration depth directly from the Zipingpu reservoir itself is limited to 3.5 km depth, while the infiltration depth downwards along the Beichuan-Yingxiu fault in the study area is about 5.5 km depth. Results show the low-velocity region in the east part of the study area is related to the Proterozoic sedimentary rocks. The Guanxian-Anxian fault is well delineated by obvious velocity contrast and may mark the border between the Tibetan Plateau in the west and the Sichuan basin in the east.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 385 ◽  
Author(s):  
Li-Wei Kuo ◽  
Jyh-Rou Huang ◽  
Jiann-Neng Fang ◽  
Jialiang Si ◽  
Haibing Li ◽  
...  

Graphitization of carbonaceous materials (CM) has been experimentally demonstrated as potential evidence of seismic slip within a fault gouge. The southern segment of the Longmenshan fault, a CM-rich-gouge fault, accommodated coseismic slip during the 2008 Mw 7.9 Wenchuan earthquake and potentially preserves a record of processes that occurred on the fault during the slip event. Here, we present a multi-technique characterization of CM within the active fault zone of the Longmenshan fault from the Wenchuan earthquake Fault Scientific Drilling-1. By contrast with field observations, graphite is pervasively and only distributed in the gouge zone, while heterogeneously crystallized CM are present in the surrounding breccia. The composite dataset that is presented, which includes the localized graphite layer along the 2008 Wenchuan earthquake principal slip zone, demonstrates that graphite is widely distributed within the active fault zone. The widespread occurrence of graphite, a seismic slip indicator, reveals that surface rupturing events commonly occur along the Longmenshan fault and are characteristic of this tectonically active region.


Sign in / Sign up

Export Citation Format

Share Document