scholarly journals The complement of polyhedral product spaces and the dual simplicial complexes

2018 ◽  
Vol 222 (9) ◽  
pp. 2470-2489
Author(s):  
Qibing Zheng
Author(s):  
Jorge Aguilar-Guzmán ◽  
Jesús González ◽  
John Oprea

For a graph $\Gamma$ , let $K(H_{\Gamma },\,1)$ denote the Eilenberg–Mac Lane space associated with the right-angled Artin (RAA) group $H_{\Gamma }$ defined by $\Gamma$ . We use the relationship between the combinatorics of $\Gamma$ and the topological complexity of $K(H_{\Gamma },\,1)$ to explain, and generalize to the higher TC realm, Dranishnikov's observation that the topological complexity of a covering space can be larger than that of the base space. In the process, for any positive integer $n$ , we construct a graph $\mathcal {O}_n$ whose TC-generating function has polynomial numerator of degree $n$ . Additionally, motivated by the fact that $K(H_{\Gamma },\,1)$ can be realized as a polyhedral product, we study the LS category and topological complexity of more general polyhedral product spaces. In particular, we use the concept of a strong axial map in order to give an estimate, sharp in a number of cases, of the topological complexity of a polyhedral product whose factors are real projective spaces. Our estimate exhibits a mixed cat-TC phenomenon not present in the case of RAA groups.


10.37236/1245 ◽  
1996 ◽  
Vol 3 (1) ◽  
Author(s):  
Art M. Duval

Björner and Wachs generalized the definition of shellability by dropping the assumption of purity; they also introduced the $h$-triangle, a doubly-indexed generalization of the $h$-vector which is combinatorially significant for nonpure shellable complexes. Stanley subsequently defined a nonpure simplicial complex to be sequentially Cohen-Macaulay if it satisfies algebraic conditions that generalize the Cohen-Macaulay conditions for pure complexes, so that a nonpure shellable complex is sequentially Cohen-Macaulay. We show that algebraic shifting preserves the $h$-triangle of a simplicial complex $K$ if and only if $K$ is sequentially Cohen-Macaulay. This generalizes a result of Kalai's for the pure case. Immediate consequences include that nonpure shellable complexes and sequentially Cohen-Macaulay complexes have the same set of possible $h$-triangles.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 765
Author(s):  
Lorena Popa ◽  
Lavinia Sida

The aim of this paper is to provide a suitable definition for the concept of fuzzy inner product space. In order to achieve this, we firstly focused on various approaches from the already-existent literature. Due to the emergence of various studies on fuzzy inner product spaces, it is necessary to make a comprehensive overview of the published papers on the aforementioned subject in order to facilitate subsequent research. Then we considered another approach to the notion of fuzzy inner product starting from P. Majundar and S.K. Samanta’s definition. In fact, we changed their definition and we proved some new properties of the fuzzy inner product function. We also proved that this fuzzy inner product generates a fuzzy norm of the type Nădăban-Dzitac. Finally, some challenges are given.


Sign in / Sign up

Export Citation Format

Share Document