High Pressure effects on electrical resistivity and dielectric properties of nanocrystalline SnO2

2005 ◽  
Vol 66 (10) ◽  
pp. 1621-1627 ◽  
Author(s):  
P. Thangadurai ◽  
A. Chandra Bose ◽  
S. Ramasamy ◽  
R. Kesavamoorthy ◽  
T.R. Ravindran
2006 ◽  
Vol 05 (04n05) ◽  
pp. 471-477 ◽  
Author(s):  
P. THANGADURAI ◽  
A. CHANDRA BOSE ◽  
S. RAMASAMY ◽  
R. KESAVAMOORTHY ◽  
T. R. RAVINDRAN

Rutile structured nanocrystalline tin oxide (nano- SnO 2) was prepared by chemical precipitation method with different grain sizes. Its electrical and dielectric properties were studied using complex impedance spectroscopy under different hydrostatic pressures. These studies showed a transition in nano- SnO 2 under high-pressure. The transition pressures obtained from both the resistivity and dielectric measurements agree with each other and increase considerably with decrease in grain size. In order to find whether the transition under pressure is structural related or not, in situ high pressure Raman spectroscopy was done up to 3.38 GPa at room temperature. No structural change was observed and the transition may be due to the co-operative phenomenon of the change in band gap and better connectivity between grain boundaries.


2004 ◽  
Vol 132 (5) ◽  
pp. 325-328 ◽  
Author(s):  
T. Nakano ◽  
M. Hedo ◽  
Y. Uwatoko ◽  
E.V. Sampathkumaran

1977 ◽  
Vol 66 (2) ◽  
pp. 875-876 ◽  
Author(s):  
M. Lamotte ◽  
S. Risemberg ◽  
A. M. Merle ◽  
J. Joussot‐Dubien

ACS Omega ◽  
2021 ◽  
Author(s):  
Ryo Matsumoto ◽  
Sayaka Yamamoto ◽  
Yoshihiko Takano ◽  
Hiromi Tanaka

1975 ◽  
Vol 11 (7) ◽  
pp. 2705-2706 ◽  
Author(s):  
C. Boekema ◽  
F. van der Woude ◽  
G. A. Sawatzky

2014 ◽  
Vol 73 ◽  
pp. 138-143 ◽  
Author(s):  
Yuchuan Tao ◽  
Zbigniew A. Dreger ◽  
Yogendra M. Gupta

Author(s):  
Kenneth E. Prehoda ◽  
Ed S. Mooberry ◽  
John L. Markley

Sign in / Sign up

Export Citation Format

Share Document