gel properties
Recently Published Documents


TOTAL DOCUMENTS

574
(FIVE YEARS 243)

H-INDEX

43
(FIVE YEARS 9)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Shichen Zhu ◽  
Xiaocao Chen ◽  
Jiani Zheng ◽  
Wenlong Fan ◽  
Yuting Ding ◽  
...  

High resistance to heating treatments is a prerequisite for ready-to-eat (RTE) surimi products. In this study, emulsion-formulated surimi gels were prepared, and the effects of oil types and emulsification degrees on the thermal stability of surimi gel were investigated. The results showed the gel properties of surimi gels were modulated by oil types and emulsification degrees. In detail, the rising pre-emulsification ratio caused the increase of the emulsifying activity index (EAI) and decrease of emulsifying stability index (ESI) for both emulsions. The larger droplet sizes of perilla seed oil than soybean oil may be responsible for their emulsifying stability difference. The gel strength, water retention, dynamic modulus and texture properties of both kinds of surimi gels displayed a firstly increased and then decreased tendency with the rising pre-emulsification ratios. The peak values were obtained as perilla seed oil emulsion with emulsification ratio of 20% group (P1) and soybean oil emulsion with emulsification ratio of 40% group (S2), respectively. Anyway, all emulsion gels showed higher thermal stability than the control group regardless of oil types. Similar curves were also obtained for the changes of hydrogen bond, ionic bond and hydrophobic interactions. Overall, perilla seed oil emulsion with emulsification ratio of 20% (P1 group) contributed to the improved thermal stability of surimi gels.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Yanjiao Chu ◽  
Shanggui Deng ◽  
Guancheng Lv ◽  
Mingao Li ◽  
Hongli Bao ◽  
...  

In order to improve the quality of squid surimi products, squid surimi gels were prepared using several types of organic salts under two heating conditions to study the effects of organic salts on squid gel properties. Compared with the NaCl group, organic salts reduced the solubilization capacity of myofibrillar protein, and significant (p < 0.05) decreases in the breaking force, breaking distance, texture, and water-holding capacity of the gel were observed in the sodium gluconate group, while significant (p < 0.05) increases in the breaking force, breaking distance, texture, and water-holding capacity of the gel were observed in the sodium citrate and sodium tartrate groups. Although the mixed addition of NaCl and organic salt improved surimi gel quality, the effective improvement was still lower than that of only organic salt. Rheological properties indicated that sodium citrate and sodium tartrate had high viscoelasticity. The squid surimi gel prepared by direct heating exhibited better properties than gels prepared by two-step heating. The chemical force of squid gel prepared with sodium citrate and sodium tartrate formed a stronger matrix than the gels prepared with other salts. For color, the addition of sodium citrate resulted in an undesirable color of squid surimi gels, while the addition of sodium tartrate improved the whiteness of the surimi gel. The results showed that the quality of surimi gel was dependent upon the choice of heating method and the types of salt used. Sodium citrate and sodium tartrate could significantly improve the gel properties of squid surimi. This study provides reliable guidance for improving the overall quality of squid surimi gels.


Foods ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Zhili Ji ◽  
Long Yu ◽  
Qingfei Duan ◽  
Song Miao ◽  
Hongsheng Liu ◽  
...  

This study investigates the morphological and rheological properties of blended gelatin (GA; a cooling-induced gel (cool-gel)) and hydroxypropyl methylcellulose (HPMC; a heating-induced gel (thermo-gel)) systems using a fluorescence microscope, small angle X-ray scattering (SAXS), and a rheometer. The results clearly indicate that the two biopolymers are immiscible and have low compatibility. Moreover, the rheological behavior and morphology of the GA/HPMC blends significantly depend on the blending ratio and concentration. Higher polysaccharide contents decrease the gelling temperature and improve the gel viscoelasticity character of GA/HPMC blended gels. The SAXS results reveal that the correlation length (ξ) of the blended gels decreases from 5.16 to 1.89 nm as the HPMC concentration increases from 1 to 6%, which suggests that much denser networks are formed in blended gels with higher HPMC concentrations. Overall, the data reported herein indicate that the gel properties of gelatin can be enhanced by blending with a heating-induced gel.


2022 ◽  
pp. 105915
Author(s):  
Yongxia Xu ◽  
Yanan Lv ◽  
Honglei Zhao ◽  
Xueli He ◽  
Xuepeng Li ◽  
...  
Keyword(s):  

LWT ◽  
2022 ◽  
Vol 153 ◽  
pp. 112463
Author(s):  
Jiahao Li ◽  
Na Yang ◽  
Jun Tang ◽  
Yifan Gui ◽  
Yu Zhu ◽  
...  

LWT ◽  
2022 ◽  
pp. 113082
Author(s):  
Jialun Hu ◽  
Ling Ma ◽  
Xianqi Liu ◽  
Hongyu Li ◽  
Minghan Zhang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 90
Author(s):  
Xiaoyu Yang ◽  
Jiao Feng ◽  
Qianqian Zhu ◽  
Rui Hong ◽  
Liang Li

Exopolysaccharide (EPS) producing lactic acid bacteria (LAB) is considered to be an effective texture improver. The effect of LAB strains (different EPS production capacity) on physicochemical properties (texture profile, water distribution, rheological properties, and microstructure), protein conformation, and chemical forces of soybean protein gel was investigated. Correlations between EPS yield and gel properties were established. Large masses of EPS were isolated from L. casei fermentation gel (L. casei-G, 677.01 ± 19.82 mg/kg). Gel with the highest hardness (319.74 ± 9.98 g) and water holding capacity (WHC, 87.74 ± 2.00%) was also formed with L. casei. The conversion of β-sheet to α-helix, the increased hydrophobic interaction and ionic bond helped to form an ordered gel network. The yield was positively correlated with hardness, WHC, A22, viscoelasticity, and viscosity, but negatively correlated with A23 (p < 0.05). The macromolecular properties of EPS (especially the yield) and its incompatibility with proteins could be explained as the main reason for improving gel properties. In conclusion, the EPS producing LAB, especially L. casei used in our study, is the best ordinary coagulate replacement in soybean-based products.


Sign in / Sign up

Export Citation Format

Share Document