chemical precipitation
Recently Published Documents


TOTAL DOCUMENTS

1183
(FIVE YEARS 352)

H-INDEX

54
(FIVE YEARS 10)

Author(s):  
Priya Gupta ◽  
Kuldeep Kumar ◽  
Syed Hasan Saeed ◽  
Narendra Kumar Pandey ◽  
Vernica Verma ◽  
...  

Abstract This research deals with study of enhanced liquefied petroleum gas (LPG) and humidity sensing properties of Sn-doped NiO pellets synthesized by chemical precipitation route. XRD, FTIR, SEM, and UV–Vis studies were employed to understand the effect of Sn doping on the structural, morphological, and optical properties of the NiO nanoparticles. XRD results revealed that doping of tin in NiO had a significant impact on the crystallite size, peak intensity, strain, lattice parameter, etc. The calculated crystallite size of pure and 3 mol% doped NiO was 33.2 nm and 13.3 nm, respectively. SEM micrographs revealed that the structure of the samples was irregular spheres and non-homogeneous. The dependence of LPG sensing properties on the structural and surface morphological properties has also been studied. The maximum response of 30.46% to 2.0 vol% of LPG was observed at room temperature (300 K). The same sample also shows high humidity sensing response of 87.11% towards 90% RH. Graphic abstract


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 569
Author(s):  
Oleg E. Polozhentsev ◽  
Ilia A. Pankin ◽  
Darya V. Khodakova ◽  
Pavel V. Medvedev ◽  
Anna S. Goncharova ◽  
...  

Herein we report the development of a nanocomposite for X-ray-induced photodynamic therapy (X-PDT) and computed tomography (CT) based on PEG-capped GdF3:Tb3+ scintillating nanoparticles conjugated with Rose Bengal photosensitizer via electrostatic interactions. Scintillating GdF3:Tb3+ nanoparticles were synthesized by a facile and cost-effective wet chemical precipitation method. All synthesized nanoparticles had an elongated “spindle-like” clustered morphology with an orthorhombic structure. The structure, particle size, and morphology were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analysis. The presence of a polyethylene glycol (PEG) coating and Rose Bengal conjugates was proved by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and ultraviolet–visible (UV-vis) analysis. Upon X-ray irradiation of the colloidal PEG-capped GdF3:Tb3+–Rose Bengal nanocomposite solution, an efficient fluorescent resonant energy transfer between scintillating nanoparticles and Rose Bengal was detected. The biodistribution of the synthesized nanoparticles in mice after intravenous administration was studied by in vivo CT imaging.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Thirumala Rao Gurugubelli ◽  
R. V. S. S. N. Ravikumar ◽  
Ravindranadh Koutavarapu

A simple chemical precipitation route was utilized for the synthesis of ZnO nanoparticles (NPs), CdS NPs and ZnO–CdS nanocomposites (NCs). The synthesized nanostructures were examined for the crystal structure, morphology, optical properties and photodegradation activity of rhodamine B (RhB) dye. The ZnO–CdS NCs showed a mixed phase of hexagonal wurtzite structure for both ZnO NPs and CdS NPs. Pure ZnO NPs and CdS NPs possessed bandgaps of 3.2617 and 2.5261 eV, respectively. On the other hand, the composite nanostructures displayed a more narrow bandgap of 2.9796 eV than pure ZnO NPs. When compared to bare ZnO NPs, the PL intensity of near-band-edge emission at 381 nm was practically suppressed, suggesting a lower rate of photogenerated electron–hole (e−/h+) pairs recombination, resulting in enhanced photocatalytic activity. Under solar light, the composite nanostructures displayed a photodegradation efficiency of 98.16% towards of RhB dye. After four trials, the structural stability of ZnO–CdS NCs was verified.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 235
Author(s):  
Fatma Mohamed ◽  
Safwat Hassaballa ◽  
Mohamed Shaban ◽  
Ashour M. Ahmed

In this paper, Fe2O3 and Fe2O3-zeolite nanopowders are prepared by chemical precipitation utilizing the rusted iron waste and natural zeolite. In addition to the nanomorphologies; the chemical composition, structural parameters, and optical properties are examined using many techniques. The Fe2O3-zeolite photocatalyst showed smaller sizes and higher light absorption in visible light than Fe2O3. Both Fe2O3 and Fe2O3-zeolite are used as photocatalysts for methylene blue (MB) photodegradation under solar light. The effects of the contact time, starting MB concentration, Fe2O3-zeolite dose, and pH value on photocatalytic performance are investigated. The full photocatalytic degradation of MB dye (10 mg/L) is achieved using 75 mg of Fe2O3-zeolite under visible light after 30 s, which, to the best of our knowledge, is the highest performance yet for Fe2O3-based photocatalysts. This photocatalyst has also shown remarkable stability and recyclability. The kinetics and mechanisms of the photocatalytic process are studied. Therefore, the current work can be applied industrially as a cost-effective method for eliminating the harmful MB dye from wastewater and recycling the rusted iron wires.


2022 ◽  
Author(s):  
Mohammad Saeed Vasheghani Farahani ◽  
Maryam Nikzad ◽  
Mohsen Ghorbani

Abstract In this work, a photocatalytic nanocomposite, Fe-doped ZnO/nanocellulose, was synthesized using an in-situ method and examined for methylene blue (MB) degradation. For this purpose, pure ZnO (PZ) was synthesized by the chemical precipitation method and then subjected to Fe+3 doping with different concentrations of Fe3+ (1, 3, and 5 mol%). The PZ and Fe-doped ZnO (FZ) samples were characterized using several standard analyses. UV-vis DRS analysis was also used to investigate the effect of Fe3+ doping on the bandgap of PZ. The doping of Fe3+ enhanced the photocatalytic activity of ZnO under visible light. The degradation efficiency of FZ samples (> 50%) was enhanced compared to the pristine ZnO (36.91%) during the same period. The catalyst with the highest degradation efficiency (94.21%) was then conjugated with broom corn stalk-derived nanocellulose (NC) at varying NC/ Zn2+ molar ratios (0.1, 0.2, 0.3, and 0.4) and characterized by various analyses. The NC enhanced the hydroxyl group at the surface of the nanocomposite, consequently improved the photocatalytic performance of the synthesized samples. The ability of the optimized photocatalyst for MB degradation was assessed. The effect of operating parameters such as pH, catalyst dosage, and initial MB concentration was investigated and degradation efficiency of 98.84% was achieved at the optimum condition. Besides, photocatalyst regeneration study indicated the great photocatalytic performance of this nanocomposite with no loss in its degradation efficiency. The facile synthesis and fast degradation rate of this nanocomposite make it a promising candidate for real-world wastewater treatment.


Separations ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Huda S. Alhasan ◽  
Nadiyah Alahmadi ◽  
Suhad A. Yasin ◽  
Mohammed Y. Khalaf ◽  
Gomaa A. M. Ali

This work describes the hydroxyapatite nanoparticle (HAP) preparation from eggshell waste and their application as an adsorbent for Cephalexin (Ceph) antibiotic removal from aqueous solutions. Chemical precipitation with phosphoric acid was used to evaluate the feasibility of calcium oxide for HAP preparation. The structural properties of HAP were characterized by X-ray diffraction, which revealed the formation of the hydroxyapatite crystalline phase formation. In addition, transmitting electron spectroscopy showed an irregular shape with a variation in size. The impact of various experimental conditions on the removal efficiency such as the solution’s pH, contact time, HAP mass, solution temperature, and Ceph concentration were studied. Experimental data showed that HAP could remove most Ceph species from aqueous solutions within 1 h at pH = 7 with 70.70% adsorption efficiency utilizing 50 mg of the HAP. The removal process of Ceph species by HAP was kinetically investigated using various kinetic models, and the results showed the suitability of the pseudo-second-order kinetic model for the adsorption process description. Moreover, the removal process was thermodynamically investigated; the results showed that the removal was spontaneous endothermic and related to the randomness increase. The data confirmed that HAP had high efficiency in removing Ceph antibiotics from an aqueous solution.


2022 ◽  
Author(s):  
Smriti Mukherjee ◽  
Iyyappan E ◽  
Keerthi Satheesh ◽  
Elsa Maria Jordi ◽  
Saranya S ◽  
...  

In the current investigation, HA nanorods and nanoplates with a high surface area have been synthesized using the chemical precipitation method via alcogel formation employing L-arginine as a crystal growth...


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3445
Author(s):  
Mohamed Shaban ◽  
Mohammad BinSabt ◽  
Ashour M. Ahmed ◽  
Fatma Mohamed

Corrosion-induced iron rust causes severe danger, pollution, and economic problems. In this work, nanopowders of Fe2O3 and Fe2O3/zeolite are synthesized for the first time using rusted iron waste and natural zeolite heulandite by chemical precipitation. The chemical composition, nanomorphologies, structural parameters, and optical behaviors are investigated using different techniques. The Fe2O3/zeolite nanocomposite showed smaller sizes and greater light absorption capability in visible light than Fe2O3 nanopowder. The XRD pattern shows crystalline hematite (α-Fe2O3) with a rhombohedral structure. The crystallite sizes for the plane (104) of the Fe2O3 and Fe2O3/zeolite are 64.84 and 56.53 nm, respectively. The Fe2O3 and Fe2O3/zeolite have indirect bandgap values of 1.87 and 1.91 eV and direct bandgap values of 2.04 and 2.07 eV, respectively. Fe2O3 and Fe2O3/zeolite nanophotocatalysts are used for solar photoelectrochemical (PEC) hydrogen production. The Fe2O3/zeolite exhibits a PEC catalytic hydrogen production rate of 154.45 mmol/g.h @ 1 V in 0.9 M KOH solution, which is the highest value yet for Fe2O3-based photocatalysts. The photocurrent density of Fe2O3/zeolite is almost two times that of Fe2O3 catalyst, and the IPCE (incident photon-to-current conversion efficiency) reached ~27.34%@307 nm and 1 V. The electrochemical surface area (ECSA) values for Fe2O3 and Fe2O3/zeolite photocatalysts were 7.414 and 21.236 m2/g, respectively. The rate of hydrogen production for Fe2O3/zeolite was 154.44 mmol h−1/g. This nanophotocatalyst has a very low PEC corrosion rate of 7.6 pm/year; it can retain ~97% of its initial performance. Therefore, the present research can be applied industrially as a cost-effective technique to address two issues at once by producing solar hydrogen fuel and recycling the rusted iron wires.


Sign in / Sign up

Export Citation Format

Share Document