CFPA: Congestion aware, fault tolerant and process variation aware adaptive routing algorithm for asynchronous Networks-on-Chip

2019 ◽  
Vol 128 ◽  
pp. 151-166 ◽  
Author(s):  
Sayed T. Muhammad ◽  
Mohamed Saad ◽  
Ali A. El-Moursy ◽  
Magdy A. El-Moursy ◽  
Hesham F.A. Hamed
2021 ◽  
pp. 105145
Author(s):  
N. Taherkhani ◽  
R. Akbar ◽  
F. Safaei ◽  
M. Moudi

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1076 ◽  
Author(s):  
Zulqar Nain ◽  
Rashid Ali ◽  
Sheraz Anjum ◽  
Muhammad Khalil Afzal ◽  
Sung Won Kim

Scalability is a significant issue in system-on-a-chip architectures because of the rapid increase in numerous on-chip resources. Moreover, hybrid processing elements demand diverse communication requirements, which system-on-a-chip architectures are unable to handle gracefully. Network-on-a-chip architectures have been proposed to address the scalability, contention, reusability, and congestion-related problems of current system-on-a-chip architectures. The reliability appears to be a challenging aspect of network-on-a-chip architectures because of the physical faults introduced in post-manufacturing processes. Therefore, to overcome such failures in network-on-a-chip architectures, fault-tolerant routing is critical. In this article, a network adaptive fault-tolerant routing algorithm is proposed, where the proposed algorithm enhances an efficient dynamic and adaptive routing algorithm. The proposed algorithm avoids livelocks because of its ability to select an alternate outport. It also manages to bypass congested regions of the network and balances the traffic load between outports that have an equal number of hop counts to its destination. Simulation results verified that in a fault-free scenario, the proposed solution outperformed a fault-tolerant XY by achieving a lower latency. At the same time, it attained a higher flit delivery ratio compared to the efficient dynamic and adaptive routing algorithm. Meanwhile, in the situation of a faulty network, the proposed algorithm could reach a higher flit delivery ratio of up to 18% while still consuming less power compared to the efficient dynamic and adaptive routing algorithm.


Author(s):  
Chakib Nehnouh ◽  
Mohamed Senouci

To provide correct data transmission and to handle the communication requirements, the routing algorithm should find a new path to steer packets from the source to the destination in a faulty network. Many solutions have been proposed to overcome faults in network-on-chips (NoCs). This article introduces a new fault-tolerant routing algorithm, to tolerate permanent and transient faults in NoCs. This solution called DINRA can satisfy simultaneously congestion avoidance and fault tolerance. In this work, a novel approach inspired by Catnap is proposed for NoCs using local and global congestion detection mechanisms with a hierarchical sub-network architecture. The evaluation (on reliability, latency and throughput) shows the effectiveness of this approach to improve the NoC performances compared to state of art. In addition, with the test module and fault register integrated in the basic architecture, the routers are able to detect faults dynamically and re-route packets to fault-free and congestion-free zones.


Sign in / Sign up

Export Citation Format

Share Document