Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye

2009 ◽  
Vol 206 (1) ◽  
pp. 53-63 ◽  
Author(s):  
P. Balraju ◽  
P. Suresh ◽  
Manish Kumar ◽  
M.S. Roy ◽  
G.D. Sharma
RSC Advances ◽  
2015 ◽  
Vol 5 (121) ◽  
pp. 100159-100168 ◽  
Author(s):  
Gentian Yue ◽  
Guang Yang ◽  
Fumin Li ◽  
Jihuai Wu

A much higher photovoltaic performance of a dye-sensitized solar cell with a (P-A) Gr/NiCo2O4 counter electrode is achieved than that of a Pt configuration device.


Author(s):  
Shyamal Datta ◽  
Argha Dey ◽  
Nayan Ranjan Singha ◽  
Subhasis Roy

AbstractThis study reports the performance analysis of an organic dye-sensitized solar cell (DSSC), introducing MnO2 as an electron transport layer in TiO2/MnO2 bilayer assembly. The DSSCs have been fabricated using TiO2 and TiO2/MnO2 layer-by-layer architecture films onto fluorine-doped tin oxide (FTO) glass and sensitized with natural dye extracted from Malvaviscus penduliflorus flower in ethanol medium. The counter electrode was prepared to layer copper powder containing paste onto FTO's conductive side by the doctor's blade method. The optical, morphological, and structural properties of photoanodes were explored via ultraviolet–visible, field emission scanning electron microscopy, and X-ray diffraction analyses. Moreover, dye complexity and thermostability of dyes were characterized via Fourier-transform infrared spectroscopy and thermogravimetric analyses. The iodide/triiodide (i.e., I−/I3−) redox couple of electrolyte solution was employed as a charge transport medium between the electrodes. Finally, photoanode and counter electrode sandwiches were assembled to envisage the photovoltaic performance potential under simulated AM 1.5G solar illumination using 100 mW cm–2 light intensity. The as-fabricated DSSC comprising TiO2/MnO2 bilayer assembly exhibited 6.02 mA cm–2 short circuit current density (Jsc), 0.38 V open-circuit voltage (Voc), 40.38% fill factor, and 0.92% conversion efficiency, which is about 200% higher compared to the assembly devoid of MnO2 layer.


Author(s):  
Elindjeane Sheela Sowbakkiyavathi ◽  
Vignesh Murugadoss ◽  
Ramadasse Sittaramane ◽  
Ragupathy Dhanusuraman ◽  
Subramania Angaiah

Sign in / Sign up

Export Citation Format

Share Document