Adomian decomposition method for solving the telegraph equation in charged particle transport

2005 ◽  
Vol 95 (3) ◽  
pp. 407-414 ◽  
Author(s):  
M.A. Abdou
Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 426 ◽  
Author(s):  
Hassan Khan ◽  
Rasool Shah ◽  
Poom Kumam ◽  
Dumitru Baleanu ◽  
Muhammad Arif

In the present article, fractional-order telegraph equations are solved by using the Laplace-Adomian decomposition method. The Caputo operator is used to define the fractional derivative. Series form solutions are obtained for fractional-order telegraph equations by using the proposed method. Some numerical examples are presented to understand the procedure of the Laplace-Adomian decomposition method. As the Laplace-Adomian decomposition procedure has shown the least volume of calculations and high rate of convergence compared to other analytical techniques, the Laplace-Adomian decomposition method is considered to be one of the best analytical techniques for solving fractional-order, non-linear partial differential equations—particularly the fractional-order telegraph equation.


1993 ◽  
Vol 403 ◽  
pp. 377 ◽  
Author(s):  
T. I. Gombosi ◽  
J. R. Jokipii ◽  
J. Kota ◽  
K. Lorencz ◽  
L. L. Williams

Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6269-6280
Author(s):  
Hassan Gadain

In this work, combined double Laplace transform and Adomian decomposition method is presented to solve nonlinear singular one dimensional thermo-elasticity coupled system. Moreover, the convergence proof of the double Laplace transform decomposition method applied to our problem. By using one example, our proposed method is illustrated and the obtained results are confirmed.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 182-188
Author(s):  
O. González-Gaxiola ◽  
Anjan Biswas ◽  
Abdullah Kamis Alzahrani

AbstractThis paper presents optical Gaussons by the aid of the Laplace–Adomian decomposition scheme. The numerical simulations are presented both in the presence and in the absence of the detuning term. The error analyses of the scheme are also displayed.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
Muhammad Arif

AbstractIn this article, an efficient analytical technique, called Laplace–Adomian decomposition method, is used to obtain the solution of fractional Zakharov– Kuznetsov equations. The fractional derivatives are described in terms of Caputo sense. The solution of the suggested technique is represented in a series form of Adomian components, which is convergent to the exact solution of the given problems. Furthermore, the results of the present method have shown close relations with the exact approaches of the investigated problems. Illustrative examples are discussed, showing the validity of the current method. The attractive and straightforward procedure of the present method suggests that this method can easily be extended for the solutions of other nonlinear fractional-order partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document