adomian polynomials
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
pp. 3061-3070
Author(s):  
L. N. M. Tawfiq ◽  
Z. H. Kareem

     This paper presents an analysis solution for systems of partial differential equations using a new modification of the decomposition method to overcome the computational difficulties. Convergence of series solution was discussed with two illustrated examples, and the method showed a high-precision, being a fast approach to solve the non-linear system of PDEs with initial conditions. There is no need to convert the nonlinear terms into the linear ones due to the Adomian polynomials. The method does not require any discretization or assumption for a small parameter to be present in the problem. The steps of the suggested method are easily implemented, with high accuracy and rapid convergence to the exact solution, compared with other methods that can be used to solve systems of PDEs.


Author(s):  
Idriss Noureddine Zaouagui ◽  
Toufik Badredine

In this work, we adapted another time the Adomian decomposition method for solving nonlinear and non-autonomous ODEs systems. Therefore, our expressions of the Adomian polynomials are determined for a several-variable differential operators. The solution series is shown that it stay coincide with the Taylor series. Thus new conditions of convergence have been established, some systemes has been solved by ADM using Maple 2020. keywords Adomian decomposition method, Adomian polynomials, ODEs systems, initial value problems, several-variables differential operators. Classification 26B12, 34L30, 47E05, 65B10, 65L05, 65L80


Author(s):  
R. O. Ijaiya ◽  
O. A. Taiwo ◽  
K. A. Bello

This paper is concerned with modification of the Adomian Decomposition Method for solving linear and non-linear Volterra and Volterra-Fredholm Integro-Differential equations. The Modified form of ADM was carried out by replacing the Adomian polynomials constructed in the conventional Adomian Decomposition Method with the constructed canonical polynomials. The modified Adomian Decomposition Method was applied to solve some existing example. The results obtained using the newly modified ADM proved superior when compared with the conventional ADM.


Author(s):  
Kamel Al-Khaled ◽  
Maha Yousef

In this article, we study the fractional mathematical model of HIV-1 infection of CD4+ T-cells, by studying a system of fractional differential equations of first order with some initial conditions, we study the changing effect of many parameters. The fractional derivative is described in the caputo sense. The adomian decomposition method (Shortly, ADM) method was used to calculate an approximate solution for the system under study. The nonlinear term is dealt with the help of adomian polynomials. Numerical results are presented with graphical justifications to show the accuracy of the proposed methods.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
I. L. El-Kalla ◽  
E. M. Mohamed ◽  
H. A. A. El-Saka

AbstractIn this paper, we apply an accelerated version of the Adomian decomposition method for solving a class of nonlinear partial differential equations. This version is a smart recursive technique in which no differentiation for computing the Adomian polynomials is needed. Convergence analysis of this version is discussed, and the error of the series solution is estimated. Some numerical examples were solved, and the numerical results illustrate the effectiveness of this version.


2020 ◽  
Vol 70 (4) ◽  
pp. 419-424
Author(s):  
Amit Ujlayan ◽  
Mohit Arya

Riccati differential equations (RDEs) plays important role in the various fields of defence, physics, engineering, medical science, and mathematics. A new approach to find the numerical solution of a class of RDEs with quadratic nonlinearity is presented in this paper. In the process of solving the pre-mentioned class of RDEs, we used an ordered combination of Green’s function, Adomian’s polynomials, and Pade` approximation. This technique is named as green decomposition method with Pade` approximation (GDMP). Since, the most contemporary definition of Adomian polynomials has been used in GDMP. Therefore, a specific class of Adomian polynomials is used to advance GDMP to modified green decomposition method with Pade` approximation (MGDMP). Further, MGDMP is applied to solve some special RDEs, belonging to the considered class of RDEs, absolute error of the obtained solution is compared with Adomian decomposition method (ADM) and Laplace decomposition method with Pade` approximation (LADM-Pade`). As well, the impedance of the method emphasised with the comparative error tables of the exact solution and the associated solutions with respect to ADM, LADM-Pade`, and MGDMP. The observation from this comparative study exhibits that MGDMP provides an improved numerical solution in the given interval. In spite of this, generally, some of the particular RDEs (with variable coefficients) cannot be easily solved by some of the existing methods, such as LADM-Pade` or Homotopy perturbation methods. However, under some limitations, MGDMP can be successfully applied to solve such type of RDEs.


Sign in / Sign up

Export Citation Format

Share Document