Performance analysis of software reliability growth models with testing-effort and change-point

2005 ◽  
Vol 76 (2) ◽  
pp. 181-194 ◽  
Author(s):  
Chin-Yu Huang
2021 ◽  
Vol 9 (3) ◽  
pp. 23-41
Author(s):  
Nesar Ahmad ◽  
Aijaz Ahmad ◽  
Sheikh Umar Farooq

Software reliability growth models (SRGM) are employed to aid us in predicting and estimating reliability in the software development process. Many SRGM proposed in the past claim to be effective over previous models. While some earlier research had raised concern regarding use of delayed S-shaped SRGM, researchers later indicated that the model performs well when appropriate testing-effort function (TEF) is used. This paper proposes and evaluates an approach to incorporate the log-logistic (LL) testing-effort function into delayed S-shaped SRGMs with imperfect debugging based on non-homogeneous Poisson process (NHPP). The model parameters are estimated by weighted least square estimation (WLSE) and maximum likelihood estimation (MLE) methods. The experimental results obtained after applying the model on real data sets and statistical methods for analysis are presented. The results obtained suggest that performance of the proposed model is better than the other existing models. The authors can conclude that the log-logistic TEF is appropriate for incorporating into delayed S-shaped software reliability growth models.


Sign in / Sign up

Export Citation Format

Share Document