The magneto-elastic subharmonic resonance of current-conducting thin plate in magnetic filed

2009 ◽  
Vol 319 (3-5) ◽  
pp. 1107-1120 ◽  
Author(s):  
Hu Yuda ◽  
Li Jing
Author(s):  
Hu Yuda ◽  
Hu Peng ◽  
Zhang Jinzhi

In this paper, the nonlinear vibration and chaotic motion of the axially moving current-conducting thin plate under external harmonic force in magnetic field is studied. Improved multiple-scale method is employed to derive the strongly nonlinear subharmonic resonance bifurcation-response equation of the strip thin plate in transverse magnetic field. By using the singularity theory, the corresponding transition variety and bifurcation, which contain two parameters of the universal unfolding for this nonlinear system, are obtained. Numerical simulations are carried out to plot the bifurcation diagrams, corresponding maximum Lyapunov exponent diagrams, and dynamical response diagrams with respect to the bifurcation parameters such as magnetic induction intensity, axial tension, external load, external excited frequency, and axial speed. The influences of different bifurcation parameters on period motion, period times motion, and chaotic motion behaviors of subharmonic resonance system are analyzed. The results show that the complex dynamic behaviors of resonance system can be controlled by changing the corresponding parameters.


2010 ◽  
Vol 130 (7) ◽  
pp. 698-703 ◽  
Author(s):  
Keisuke Eguchi ◽  
Shingo Zeze ◽  
Takashi Todaka ◽  
Masato Enokizono

Author(s):  
Toshiyuki Miyazaki ◽  
Masatoshi Saito ◽  
Shunro Yoshioka ◽  
Tsuyoshi Tokunaga ◽  
Tadashi Misu ◽  
...  
Keyword(s):  

1981 ◽  
Vol 55 (2) ◽  
pp. 406-408 ◽  
Author(s):  
N. De Leon ◽  
J. Guldberg ◽  
J. Salling

2021 ◽  
Vol 1155 (1) ◽  
pp. 012007
Author(s):  
I I Latypov ◽  
L A Bigaeva ◽  
G S Mukhametshina ◽  
N A Shaikhutdinova ◽  
A Y Gilev

Author(s):  
Giovanni Tocci Monaco ◽  
Nicholas Fantuzzi ◽  
Francesco Fabbrocino ◽  
Raimondo Luciano

AbstractIn this work, the bending behavior of nanoplates subjected to both sinusoidal and uniform loads in hygrothermal environment is investigated. The present plate theory is based on the classical laminated thin plate theory with strain gradient effect to take into account the nonlocality present in the nanostructures. The equilibrium equations have been carried out by using the principle of virtual works and a system of partial differential equations of the sixth order has been carried out, in contrast to the classical thin plate theory system of the fourth order. The solution has been obtained using a trigonometric expansion (e.g., Navier method) which is applicable to simply supported boundary conditions and limited lamination schemes. The solution is exact for sinusoidal loads; nevertheless, convergence has to be proved for other load types such as the uniform one. Both the effect of the hygrothermal loads and lamination schemes (cross-ply and angle-ply nanoplates) on the bending behavior of thin nanoplates are studied. Results are reported in dimensionless form and validity of the present methodology has been proven, when possible, by comparing the results to the ones from the literature (available only for cross-ply laminates). Novel applications are shown both for cross- and angle-ply laminated which can be considered for further developments in the same topic.


Sign in / Sign up

Export Citation Format

Share Document