Nonlinear vibrations of clamped-free circular cylindrical shells

2011 ◽  
Vol 330 (22) ◽  
pp. 5363-5381 ◽  
Author(s):  
Ye. Kurylov ◽  
M. Amabili
2001 ◽  
Author(s):  
Francesco Pellicano ◽  
Marco Amabili ◽  
Michael P. Païdoussis

Abstract The nonlinear vibrations of simply supported, circular cylindrical shells, having geometric nonlinearities is analyzed. Donnell’s nonlinear shallow-shell theory is used, and the partial differential equations are spatially discretized by means of the Galerkin procedure, using a large number of degrees of freedom. A symbolic manipulation code is developed for the discretization, allowing an unlimited number of modes. In the displacement expansion particular care is given to the comparison functions in order to reduce as much as possible the dimension of the dynamical system, without losing accuracy. Both driven and companion modes are included, allowing for traveling-wave response of the shell. The fundamental role of the axisymmetric modes, which are included in the expansion, is confirmed and a convergence analysis is performed. The effect of the geometric shell characteristics, radius, length and thickness, on the nonlinear behavior is analyzed.


Author(s):  
Francesco Pellicano

In the present paper vibrations of circular cylindrical shells having different boundary conditions are analyzed. Sanders-Koiter theory is considered for shell modeling: both linear and nonlinear vibrations are analyzed. An energy approach based on Lagrange equations is considered; a mixed expansion of displacement fields, based on harmonic functions and Tchebyshev polynomials, is applied. Several boundary conditions are analyzed: simply supported, clamped-clamped, connection with rigid bodies. Comparisons with experiments and finite element analyses show that the technique is capable to model several and complex boundary conditions. Applications to geometrically nonlinear shells show that the technique is effective also in the case of nonlinear vibration: comparisons with the literature confirm the accuracy of the approach.


Author(s):  
Antonio Zippo ◽  
Marco Barbieri ◽  
Matteo Strozzi ◽  
Vito Errede ◽  
Francesco Pellicano

In this paper an experimental study on circular cylindrical shells subjected to axial compressive and periodic loads is presented. Even though many researchers have extensively studied nonlinear vibrations of cylindrical shells, experimental studies are rather limited in number. The experimental setup is explained and deeply described along with the analysis of preliminary results. The linear and the nonlinear dynamic behavior associated with a combined effect of compressive static and a periodic axial load have been investigated for different combinations of loads; moreover, a non stationary response of the structure has been observed close to one of the resonances. The linear shell behavior is also investigated by means of a finite element model, in order to enhance the comprehension of experimental results.


2019 ◽  
Vol 99 (1) ◽  
pp. 373-391 ◽  
Author(s):  
Antonio Zippo ◽  
Marco Barbieri ◽  
Giovanni Iarriccio ◽  
Francesco Pellicano

Author(s):  
M. Amabili ◽  
Ye. Kurylov

Large-amplitude nonlinear vibrations of circular cylindrical shells with different boundary conditions are investigated. The Sanders-Koiter nonlinear shell theory, which includes shear deformation, is used to calculate the elastic strain energy. Shell’s displacement fields (longitudinal, circumferential and radial) are expanded by means of a double mixed series: harmonic functions for the circumferential variable; Chebyshev polynomials for the longitudinal variable. Boundary conditions for both simply supported and clamped-clamped shells are exactly satisfied. The Lagrangian approach is applied to obtain a system of nonlinear ordinary differential equations. Different expansions involving from 14 to 34 generalized co-ordinates, associated with natural modes of both simply supported and clamped-clamped shells are used to study the convergence of the solution. The nonlinear equations of motion are studied by using arclength continuation method and bifurcation analysis. Numerical responses obtained in the spectral neighborhood of the lowest natural frequency are compared with the results available in literature.


Sign in / Sign up

Export Citation Format

Share Document