Volume 9: 6th FSI, AE and FIV and N Symposium
Latest Publications


TOTAL DOCUMENTS

107
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

0791847888

Author(s):  
Alberto Zasso ◽  
Marco Belloli ◽  
Stefano Giappino ◽  
Sara Muggiasca

The vortex induced vibration of a rigid cylinder has been studied in the subcritical Reynolds range in terms of motion parameters and also in terms of instantaneous pressure distribution on the cylinder surface. The resulting force field has been analyzed as a function of the fundamental parameters z* (non-dimensional amplitude) and Un (critical velocity ratio) showing a possible systematic modelization of the force component synchronous with the oscillation frequency, responsible for the power input in the lock-in region. The magnitude and the phase of the synchronous force component have been studied analyzing build-up events as well as steady state constant amplitude oscillation events. A very close correspondence has been highlighted among the two different analyzed cases, confirming that a quasi-steady model of the force field is a robust and reliable representation of the flow-cylinder interaction force field. This interaction is responsible for the typical transient build-up oscillations of technical interest. The pressure distribution monitored at different locations along the oscillating cylinder axial coordinate allowed finally to show a direct link between the incoming flow velocity distribution and the correlation characteristics of the vortex shedding force distribution along the cylinder axis.


Author(s):  
Joaquin E. Moran ◽  
David S. Weaver

An experimental study was conducted to investigate two-phase damping in tube arrays. The objective was to compare different measurement methodologies in order to obtain a more reliable damping estimate. This will allow for improved guidelines related to failures due to fluidelastic instability in tube bundles. The methods compared were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The working fluid used was Refrigerant 11 (Freon), which better models the real steam-water problem, as it allows for phase change. The void fraction was measured using a gamma densitometer, introducing an improvement over the traditional Homogeneous Equilibrium Model (HEM) in terms of velocity and density predictions. The results obtained by using the half-power bandwidth method agree with data previously reported for two-phase flow. The experiments showed that the half-power bandwidth produces higher damping values than the other two, but only up to a certain void fraction. After that point, the results obtained from the three methods are very similar. The exponential fitting proved to be more consistent than the logarithmic decrement, and it is not as sensitive as the half-power bandwidth to the frequency shifting caused by the change in added mass around the tube. By plotting the damping ratio as a function of void fraction, pitch mass flux and flow regime, we were able to verify that damping is more dependent on void fraction and flow regime than on mass flux.


Author(s):  
S. Bourdier ◽  
J. R. Chaplin

The dynamics of vortex-induced vibrations of a rigid circular cylinder with structural non-linearities, introduced by means of discontinuities in the support system, are studied experimentally. The analysis of the measurements is carried out using non-linear vibration tools, i.e phase-flow portraits, frequency spectra, Lyapunov exponents and correlation dimensions, to provide an insight into the dynamical changes in the system brought about by restricting the motion. We show that chaotic motions can occur due to the structural non-linearities.


Author(s):  
Se´bastien Caillaud ◽  
Rene´-Jean Gibert ◽  
Pierre Moussou ◽  
Joe¨l Cohen ◽  
Fabien Millet

A piping system of French nuclear power plants displays large amplitude vibrations in particular flow regimes. These troubles are attributed to cavitation generated by single-hole orifices in depressurized flow regimes. Real scale experiments on high pressure test rigs and on-site tests are then conducted to explain the observed phenomenon and to find a solution to reduce pipe vibrations. The first objective of the present paper is to analyze cavitation-induced vibrations in the single-hole orifice. It is then shown that the orifice operates in choked flow with supercavitation, which is characterized by a large unstable vapor pocket. One way to reduce pipe vibrations consists in suppressing the orifices and in modifying the control valves. Three technologies involving a standard trim and anti-cavitation trims are tested. The second objective of the paper is to analyze cavitation-induced vibrations in globe-style valves. Cavitating valves operate in choked flow as the orifice. Nevertheless, no vapor pocket appears inside the pipe and no unstable phenomenon is observed. The comparison with an anti-cavitation solution shows that cavitation reduction has no impact on low frequency excitation. The effect of cavitation reduction on pipe vibrations, which involve essentially low frequencies, is then limited and the first solution, which is the standard globe-style valve installed on-site, leads to acceptable pipe vibrations. Finally, this case study may have consequences on the design of piping systems. First, cavitation in orifices must be limited. Choked flow in orifices may lead to supercavitation, which is here a damaging and unstable phenomenon. The second conclusion is that the reduction of cavitation in globe-style valve in choked flow does not reduce pipe vibrations. The issue is then to limit cavitation erosion of valve trims.


Author(s):  
Katsuhisa Fujita ◽  
Makoto Katou

The unstable phenomena of thin cylindrical shells subjected to annular axial flow are investigated. In this paper, the analytical model is composed of an elastic axisymmetric shell and a rigid one which are arranged co-axially. Considering the fluid structure interaction between shells and fluid flowing through an annular narrow passage, the coupled equation of motion is derived using Flu¨gge’s shell theory and Navier-Stokes equations. The unstable phenomena of thin cylindrical shells are clarified by using the root locus based on the complex eigenvalue analysis. The numerical parameter studies on the shells with a freely supported end and a rigid one, and with both simply supported ends, are performed taking the dimensins of shells, the characteristics of flowing fluid so on as parameters. The influence of these parameters on the threshold of instability of the coupled vibration between thin cylindrical shells and annular axial flowing fluid are investigated and discussed.


Author(s):  
H. G. D. Goyder ◽  
K. Armstrong ◽  
L. Billingham ◽  
M. J. Every ◽  
T. P. Jee ◽  
...  

Gas flow through a corrugated pipe can produce unacceptable levels of noise. The occurrence of such noise gave rise to concerns about vibration induced fatigue of small-bore subsea pipework in the Schiehallion oil field. In order to check that the subsea pipework was free from noise-induced vibration a full scale replica of the subsea equipment containing the small-bore pipework was built and tested. The test required the generation of acoustic pressures with a 1 bar amplitude and a frequency range of 80 to 800Hz. It was also necessary to arrange for resonant conditions within the pipework and for acoustic nodes and anti-nodes to be swept though a range of possible locations. The test was conducted with full-scale conditions of methane at a static pressure of 170bar and with a range of gas flow rates. Particular attention was given to achieving the correct acoustic and structural natural frequencies together with the correct acoustic and structural damping ratios. The subsea equipment was found to be vulnerable for one operating condition. This vulnerability was removed by retro-fitting a brace to the existing subsea pipework.


Author(s):  
E. de Langre ◽  
J. L. Riverin ◽  
M. J. Pettigrew

The time dependent forces resulting from a two-phase air-water mixture flowing in an elbow and a tee are measured. Their magnitudes as well as their spectral contents are analyzed. Comparison is made with previous experimental results on similar systems. For practical applications a dimensionless form is proposed to relate the characteristics of these forces to the parameters defining the flow and the geometry of the piping.


Author(s):  
Frantisek L. Eisinger ◽  
Robert E. Sullivan

Six burner/furnace systems which operated successfully without vibration are evaluated for resistance to thermoacoustic oscillations. The evaluation is based on the Rijke and Sondhauss models representing the combined burner/furnace (cold/hot) thermoacoustic systems. Frequency differences between the lowest vulnerable furnace acoustic frequencies in the burner axial direction and those of the systems’ Rijke and Sondhauss frequencies are evaluated to check for resonances. Most importantly, the stability of the Rijke and Sondhauss models is checked against the published design stability diagram of Eisinger [1] and Eisinger and Sullivan [2]. It is shown that the resistance to thermoacoustic oscillations is adequately defined by the published design stability diagram to which the evaluated cases generally adhere. Once the system falls into the stable range, the frequency differences or resonances appear to play only a secondary role. It is concluded, however, that in conjunction with stability, the primary criterion, sufficient frequency separations shall also be maintained in the design process to preclude resonances. The paper provides sufficient details to aid the design engineers.


Author(s):  
Keiko Anami ◽  
Noriaki Ishii ◽  
Charles W. Knisely ◽  
Robert V. Todd ◽  
Tatsuya Oku

This study presents 3-D model gate vibration test results demonstrating violent spontaneous vibrations and validating the basic assumptions made in previously published theoretical analyses. First, the design of a 1/13-scaled 3-D model of Folsom dam Tainter-gate is presented, in which the streamwise natural bending vibration mode of the skinplate, measured in the field vibration tests on the remaining Folsom gate, is shown to be correctly replicated with the aid of FEM simulations. Secondly, in-air and in-water vibration test results with the 1/13-scaled 3-D model are presented, reproducing the intense coupled-mode self-excited vibrations. Thirdly, test results are plotted on a theoretically calculated stability criterion diagram to confirm the validity of the theoretical analysis. Finally, the intense dynamic instability of the Folsom gate, which could have caused its failure, is presented.


Author(s):  
E. de Langre ◽  
M. P. Paidoussis ◽  
Y. Modarres-Sadeghi ◽  
O. Doare´

We consider the stability of a thin flexible cylinder considered as a beam, when subjected to axial flow and fixed at the up-stream end only. A linear stability analysis of transverse motion aims at determining the risk of flutter as a function of the governing control parameters such as the flow velocity or the length of the cylinder. Stability is analysed applying a finite difference scheme in space to the equation of motion expressed in the frequency domain. It is found that, contrary to previous predictions based on simplified theories, flutter may exist for very long cylinders, provided that the free downstream end of the cylinder is well-streamlined. More generally, a limit regime is found where the length of the cylinder does not affect the characteristics of the instability, and the deformation is confined to a finite region close to the downstream end. These results are found complementary to solutions derived for shorter cylinders and are confirmed by linear computations using a Galerkin method. A link is established to similar results on long hanging cantilevered systems with internal or external flow. The limit case of vanishing bending stiffness, where the cylinder is modelled as a string, is analysed and related to previous results. A simple model for the behaviour of long cylinders is proposed.


Sign in / Sign up

Export Citation Format

Share Document