axial load
Recently Published Documents





2022 ◽  
pp. 136943322110509
Mohammed A Sakr ◽  
Ahmad G Saad ◽  
Tamer M El-korany

This paper presents a finite element (FE) study of beam-column joints subjected to cyclic loading. This study is primarily dependent on investigating the shear behavior of joints under the influence of different column axial load ratios. Wherefore, a total range of the column axial load ratios, whether in tension or compression has been considered. This paper proposes a two-dimensional (2D) FE model that considers material non-linearity. The proposed FE model was verified with experimental results from literature that tested varying column axial load ratios and different failure modes. The examination among experiential and numerical outcomes demonstrated that the FE model can reenact the conduct of beam-column joints and can catch the different failure modes with acceptable accuracy. A parametric study was established using the proposed FE model and strut-and-tie (ST) model of Pauletta to assess the Eurocode joint shear strength equations. For this purpose, four specimens were designed according to Eurocode recommendations while two other specimens were designed to satisfy all of the Eurocode recommendations except for the required joint confinement. An interaction diagram was introduced for each specimen to express the behavior under varying column axial load ratios. The results of the comparison between Eurocode, FE model, and ST model showed some differences in calculating the joint shear strength capacity, especially under column tension loads. Furthermore, this paper proposed new design equations based on Eurocode equations taking into account the column axial load effect. These proposed equations worked to increase the accuracy in calculating the joint shear strength capacity. Proposed equations were compared to the FE model results and other experimental results available in the literature. The comparison showed that the differences with the FE model decreased and that the proposed equations had better accuracy at different tension and compression loads than the Eurocode.

2022 ◽  
Vol 12 (2) ◽  
pp. 722
Nedim Pervan ◽  
Elmedin Mešić ◽  
Adis J. Muminović ◽  
Muamer Delić ◽  
Enis Muratović ◽  

This paper describes comparative analysis of the biomechanical performances conducted on the external fixation devices whose frames are made out of two different material (stainless steel and composite material). Biomechanical properties were determined with experimental and FEM (finite element method) models which are used to study the movement of the fracture crack, establish stiffness of the design solutions and monitor generated stresses on the zones of interest. Geometric modeling of two fixation devices configurations B50 and C50 is used as a basis for structural analysis under the impact of axial load. Structural analysis results are confirmed with an experimental setup. Analyzed deflection values in the load and fracture zones are used to define the exact values of the stiffness for the construction design and fracture, respectively. The carbon frame device configuration has 28% lower construction stiffness than the one with the steel frame (for B50 configuration), i.e., 9% (for C50 configuration). In addition, fracture stiffness values for the composite frame application are approximately 23% lower (B50 configuration), i.e., 13% lower (C50 configuration), compared to steel frame. The carbon frame device has about 33% lower stresses at the critical zones compared to the steel frame at the control zone MM+ and, similarly, 35% lower stresses at the control zone MM-. With an exhausting analysis of the biomechanical properties of the fixation devices, it can be concluded that steel frame fixation device is superior, meaning it has better biomechanical characteristics compared to carbon frame fixation device, regarding obtained data for stresses and stiffnesses of the frame construction and fracture. Considering stresses at the critical zones of the fixation device construction, the carbon frame device has better biomechanical performances compared to steel frame devices.

Hazem Elbakry ◽  
Tarek Ebeido ◽  
El-Tony M. El-Tony ◽  
Momen Ali

Reinforced concrete columns consume large quantities of ties, especially inner cross-ties in columns with large dimensions. In some cases, nesting of the pillars occurs as a result of the presence of cross-ties. The main objective of this paper is to develop new methods for transverse reinforcement in RC columns and investigate their effect on the behavior of the columns. The proposed V-ties as transverse reinforcement replacing the ordinary and cross-ties details are economically feasible. They facilitate shorter construction periods and decrease materials and labor costs. For this purpose, experimental and numerical studies are carried out. In the experimental program, nine reinforced concrete columns with identical concrete dimensions and longitudinal reinforcing bars were prepared and tested under concentric axial load with different tie configurations. The main parameters were the tie configurations and the length (lv) of V-tie legs. As part of the numerical study, the finite element model using the ABAQUS software program obtained good agreement with the experimental results of specimens. A numerical parametric study was carried out to study the influence of concrete compressive strength and longitudinal reinforcement ratio on the behavior of RC columns with the considered tie configurations. Based on the experimental and numerical results, it was found that using V-tie techniques instead of traditional ties could increase the axial load capacity of columns, restrain early local buckling of the longitudinal reinforcing bars and improve the concrete core confinement of reinforced concrete columns.

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 55
Georgia E. Thermou ◽  
Andreas J. Kappos

The paper presents the background to the expressions adopted in the new Eurocode 8—3 for jacketed reinforced concrete columns. These are based on the commonly adopted concept of monolithicity factors (ratios of resistance of the jacketed section to that of an identical monolithic one). These factors are derived here in two ways: (i) by fitting experimental results for jacketed columns and (ii) by an extended parametric study of substandard reinforced concrete (R/C) members that were retrofitted by adding R/C jackets, analysed using a model developed by the authors that takes into account slip at the interface. Apart from the cross-section geometry and the thickness of the jacket, parameters of the investigation were the material properties of the core cross-section and the jacket, as well as the percentage of longitudinal reinforcement of the jacket and the percentage of dowels placed to connect the existing member to the jacket. It was found that the parameter that had the most visible effect on these factors was the normalised axial load (ν). The finally adopted factors are either simple functions of ν or constant values.

2022 ◽  
pp. 1-24
Dimitrios K. Zimos ◽  
Panagiotis E. Mergos ◽  
Vassilis K. Papanikolaou ◽  
Andreas J. Kappos

Older existing reinforced concrete (R/C) frame structures often contain shear-dominated vertical structural elements, which can experience loss of axial load-bearing capacity after a shear failure, hence initiating progressive collapse. An experimental investigation previously reported by the authors focused on the effect of increasing compressive axial load on the non-linear post-peak lateral response of shear, and flexure-shear, critical R/C columns. These results and findings are used here to verify key assumptions of a finite element model previously proposed by the authors, which is able to capture the full-range response of shear-dominated R/C columns up to the onset of axial failure. Additionally, numerically predicted responses using the proposed model are compared with the experimental ones of the tested column specimens under increasing axial load. Not only global, but also local response quantities are examined, which are difficult to capture in a phenomenological beam-column model. These comparisons also provide an opportunity for an independent verification of the predictive capabilities of the model, because these specimens were not part of the initial database that was used to develop it.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 329
Jun Wang ◽  
Xinran Wang ◽  
Yuxin Duan ◽  
Yu Su ◽  
Xinyu Yi

At present, the existing standards (AISC360-16, EN1994-1-1:2004, and JGJ138-2016) lack relevant provisions for steel-reinforced concrete (SRC) composite columns with high-strength steel. To investigate the axial compressive mechanical performance of short high-strength steel-reinforced concrete (HSSRC) columns, the axial load test was conducted on 12 short composite columns with high-strength steel and ordinary steel. The influences of steel strength, steel ratio, and the section form of steel on the failure modes, bearing capacity, and ductility of the specimens were studied. Afterward, the experimental data were compared with the existing calculation results. The results show: compared with the specimens with Q235 steel, the bearing capacity of the specimens with Q460 steel increases by 7.8–15.3%, the bearing capacity of the specimens with Q690 steel increases by 13.2–24.1%, but the ductility coefficient increases by 15.2–202.4%; with the increase of steel ratio, the bearing capacity and ductility of specimens are significantly improved. A change of the steel cross-section could influence the ductility of SRC columns more than their bearing capacity. Moreover, the calculation results show that present standards could not predict the bearing capacity of HSSRC columns. Therefore, a modified method for determining the effective strength of steel equipped in HSSRC columns was proposed. The results of the ABAQUS simulation also showed that the addition of steel fibers could significantly improve the bearing capacity of Q690 HSSRC columns. The research results provide a reference for engineering practices.

2022 ◽  
Vol 250 ◽  
pp. 113388
Bingyan Wu ◽  
Guangjun Sun ◽  
Hongjing Li ◽  
Shengyu Wang

2021 ◽  
Vol 5 (3) ◽  
pp. 237-247
Ahmad Hernadi ◽  
Rini Sahara ◽  
Septa Utami Dewi

Today, Practitioners of Civil Engineering in Indonesia are still using SNI 2847:2013 as code for reinforcement concrete design. As we know that SNI 2847:2019 been published, but practitioners still not yet use it.The point of design and evaluation in SNI 2847 code is reduction factor (ɸ) that could influence strength design of structure base on it behaviour. Load in Column is not just axial load, but flexural and combine of axial and flexural. This behavior makes the column has variate reduction factor and it can shown by interaction diagram. This research is compare between SNI 2847:2013 and SNI 2847:2019 for column with section 400x500, fc’ 20 MPa and reinforcement ratio 1%. Result of this research is compare between SNI 2847:2013 and SNI 2847:2019 for column with variation fy is not too significant. So when the column of SNI 2847:2013 inspected or evaluated by SNI 2847:2019 is not distinction.

Sign in / Sign up

Export Citation Format

Share Document