Modified transfer path analysis considering transmissibility functions for accurate estimation of vibration source

2017 ◽  
Vol 398 ◽  
pp. 70-83 ◽  
Author(s):  
Ba-Leum Kim ◽  
Jin-Young Jung ◽  
Il-Kwon Oh
Author(s):  
Zhiyong Zhang ◽  
Da Pan ◽  
Wenguang Wu ◽  
Caixia Huang

Operational transfer path analysis is applied in this study to identify the vibration source and its critical transfer path. A simple analytical five-degrees-of-freedom mechanical isolation system is first taken as an example to illustrate the analysis flow and to validate the accuracy of operational transfer path analysis. The acceleration amplitude spectrum of the receiver is used to prove the accuracy, and the path contribution of each path is used to identify the critical path. Operational transfer path analysis is then applied to the cab mount system of a heavy commercial vehicle to identify the vibration source and its critical transfer path. The vibration energy propagation capabilities from the four cab mounts to the driver’s seat are analyzed by operational transfer path analysis with the path contribution analysis, and the maximum vibration source is identified by the path operation contribution analysis. The analysis and evaluation method of the operational transfer path analysis introduced in this study can provide a research foundation and reference for vibration or noise source identification in mechanical systems.


Author(s):  
Miaomiao Li ◽  
Qinwen Liu ◽  
Guanghao Dai ◽  
Weifang Chen ◽  
Rupeng Zhu

Author(s):  
W. Schünemann ◽  
R. Schelenz ◽  
G. Jacobs ◽  
W. Vocaet

AbstractThe aim of a transfer path analysis (TPA) is to view the transmission of vibrations in a mechanical system from the point of excitation over interface points to a reference point. For that matter, the Frequency Response Functions (FRF) of a system or the Transmissibility Matrix is determined and examined in conjunction with the interface forces at the transfer path. This paper will cover the application of an operational TPA for a wind turbine model. In doing so the path contribution of relevant transfer paths are made visible and can be optimized individually.


2012 ◽  
Author(s):  
Per-Olof Sturesson ◽  
Christer Svensson ◽  
Jan Weckner ◽  
Rikard Karlsson ◽  
Peter Söhr

Sign in / Sign up

Export Citation Format

Share Document