Modified ball-type automatic balancer for rotating shafts: Analysis and experiment

2021 ◽  
Vol 496 ◽  
pp. 115927
Author(s):  
Ahmad M. Haidar ◽  
Jose L. Palacios
Keyword(s):  
1987 ◽  
Vol 54 (4) ◽  
pp. 893-897 ◽  
Author(s):  
O. Bernasconi

In this study, the intrinsic behavior of rotating shafts with residual unbalance is considered. The longitudinal component of the angular momentum caused by synchronous precession (whirling) induces torsional vibrations with a frequency of twice the rotation frequency (bisynchronous). The nonlinear term which represents this coupling is characteristic of the asymmetrical aspect of rotating shaft kinematics. This result has been obtained analytically and confirmed experimentally.


1981 ◽  
Vol 50 (1) ◽  
pp. 41-48 ◽  
Author(s):  
A. Tylikowski

1979 ◽  
Vol 101 (2) ◽  
pp. 210-223 ◽  
Author(s):  
S. Kalaycioglu ◽  
C. Bagci

It has been a well-established fact that dynamic systems in motion experience critical speeds, such as rotating shafts and geared systems whose undeformed reference geometry remain the same at all times. Their critical speeds are determined by their natural frequencies of considered type of free vibrations. Linkage mechanisms as dynamic systems in motion change their undeformed geometries as function of time during the cycle of kinematic motion. They do also experience critical operating speeds as rotating shafts and geared systems do, and their critical speeds are determined by the minima of their natural frequencies during a cycle of kinematic motion. Such a minimum occurs at the critical geometry of a mechanism, which is the position at which the maximum of the input power is required to maintain the instantaneous dynamic equilibrium of the mechanism. Actual finite line elements are used to form the global generalized coordinate flexibility matrix. The natural frequencies of the mechanism and the corresponding mode vectors (mode deflections) are determined as the eigen values and eigen vectors of the equations of instantaneous-position-free-motion of the mechanism. Method is formulated to include or exclude the link axial deformations, and apply to any number of loops having any type of planar pair. Critical speeds of planar four-bar, slider-crank, and Stephenson’s six-bar mechanisms are determined. Experimental results for the four-bar mechanism are given. Effect of axial deformations and link rotary inertias are investigated. Inclusion of link axial deformations in mechanisms having pairs with sliding freedoms is seen to predict critical speeds with large error.


Author(s):  
Tatu Leinonen

Abstract This paper presents a nonlinear model to describe the bending behaviour of a rotating shaft, based on the general theory of a bending bar. Justification for this theoretical model has been provided by tests, the resulting curves more closely fitting observed results than those of other models.


Sign in / Sign up

Export Citation Format

Share Document