rotating shafts
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 35)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ying-Chung Chen ◽  
Xu Feng Cheng ◽  
Siu-Tong Choi

Purpose This study aims to study the dynamic characteristics of a helical geared rotor-bearing system with composite material rotating shafts. Design/methodology/approach A finite element model of a helical geared rotor-bearing system with composite material rotating shafts is developed, in which the rotating shafts of the system are composed of composite material and modeled as Timoshenko beam; a rigid mass is used to represent the gear and their gyroscopic effect is taken into account; bearings are modeled as linear spring-damper; and the equations of motion are obtained by applying Lagrange’s equation. Natural frequencies, mode description, lateral responses, axial responses, lamination angles, lamination numbers, gear mesh stiffness and bearing damping coefficients are investigated. Findings The desired mechanical properties could be constructed using different lamination numbers and fiber included angles by composite rotating shafts. The frequency of the lateral module decreases as the included angle of the fibers and the principal shaft of the composite material rotating shaft increase. Because of the gear mesh stiffness increase, the resonance frequency of the coupling module of the system decreases, the lateral module is not influenced and the steady-state response decreases. The amplitude of the steady-state lateral and axial responses gradually decreases as the bearing damping coefficient increases. Practical implications The model of a helical geared rotor-bearing system with composite material rotating shafts is established in this paper. The dynamic characteristics of a helical geared rotor-bearing system with composite rotating shafts are investigated. The numerical results of this study can be used as a reference for subsequent personnel research. Originality/value The dynamic characteristics of the geared rotor-bearing system had been reported in some literature. However, the dynamic analysis of a helical geared rotor-bearing system with composite material rotating shafts is still rarely investigated. This paper shows some novel results of lateral and axial response results obtained by different lamination angles and different lamination numbers. In the future, it makes valuable contributions for further development of dynamic analysis of a helical geared rotor-bearing system with composite material rotating shafts.


Machines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 199
Author(s):  
Minh-Tuan Pham ◽  
Jong-Myon Kim ◽  
Cheol-Hong Kim

Bearings prevent damage caused by frictional forces between parts supporting the rotation and they keep rotating shafts in their correct position. However, the continuity of work under harsh conditions leads to inevitable bearing failure. Thus, methods for bearing fault diagnosis (FD) that can predict and categorize fault type, as well as the level of degradation, are increasingly necessary for factories. Owing to the advent of deep neural networks, especially convolutional neural networks (CNNs), intelligent FD methods have achieved significantly higher performance in terms of accuracy. However, in addition to accuracy, the efficiency issue still needs to be weathered in complicated diagnosis scenarios to adapt to real industrial environments. Here, we introduce a method based on multi-output classification, which utilizes the correlated features extracted for bearing compound fault type classification and crack-size classification to serve both aims. Additionally, the synergy of a time–frequency signal processing method and the proposed two-dimensional CNN helped the method perform well under the condition of variable rotational speeds. Monitoring signals of acoustic emission also had advantages for incipient FD. The experimental results indicated that utilizing correlated features in multi-output classification improved both the accuracy and efficiency of multi-task diagnosis compared to conventional CNN-based multiclass classification.


2021 ◽  
pp. 1-20
Author(s):  
Lengxue Li ◽  
Sunhong Kim ◽  
Junho Park ◽  
Youngjin Choi ◽  
Qiang Lu ◽  
...  

Abstract This paper proposes a three degrees-of-freedom tensegrity structure with a mechanism inspired by the ligamentous structure of the shoulder. The proposed mechanism simulates the wide motion ranges of the human shoulder joint and is composed of three rigid bodies and sixteen steel wires with three mutually perpendicular rotating axes. Since it belongs to the class 1 tensegrity structure that the rigid bodies do not make any contact with each other, the joint has a certain amount of flexibility, which not only can help protect its mechanism from external impacts but also can prevent human injury that might happen when the mechanism and humans interact each other. Moreover, the proposed mechanism can be manufactured by using fewer materials than a fully rigid mechanism, and thus, it can be made in a lightweight fashion and reduce the inertial effects as well. Finally, to actuate the robotic shoulder, the cables connected to each motor are able to drive the rotating shafts of the joint mechanism.


Author(s):  
B Gunn ◽  
S Theodossiades ◽  
SJ Rothberg

Control and structural health monitoring sensors are becoming increasingly common in industrial and household applications due to recent advances reducing their manufacturing costs, size and power consumption. Nevertheless, providing power for these sensors poses a key challenge to engineers, particularly in system locations where limited access renders regular maintenance infeasible due to high associated costs. In the present work, the design and physical prototype testing of a nonlinear electromagnetic vibration energy harvester is presented based on a previously reported concept of the authors. The harvester is activated by the torsional speed fluctuations of a rotating shaft. Experimental testing in a rig driven by an electric motor confirms the harvester’s properties and the modelled oscillatory behaviour. This novel rotational vibration energy harvester concept may generate over 10 mW of electrical power for a broadband speed range of approximately 400 rpm (in the examined rotational system with set fluctuating speed) for wireless sensing purposes on rotating shafts.


2021 ◽  
Vol 496 ◽  
pp. 115927
Author(s):  
Ahmad M. Haidar ◽  
Jose L. Palacios
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document