rotating shaft
Recently Published Documents


TOTAL DOCUMENTS

841
(FIVE YEARS 129)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
pp. 1-18
Author(s):  
Lawrie Virgin

Abstract This paper presents a new approach to predicting an incipient critical speed in a rotating shaft. Based on the classical governing equations of motion for an eccentric mass on a flexible shaft (the Jeffcott rotor model), the approach is centered on examining the behavior of small perturbations or random disturbances to infer the approach of a critical speed (resonance). Such disturbances, that may be based on intentional probing, or simply the result of naturally occurring fluctuations, cause small transients. It is the changing nature of these transients (as characterized by their associated eigenvalues) that is used to assess the proximity to a critical speed. In this paper the material developed is based on analysis, but generating the data from simulations or experiments will be the next step. The approach is a kind of stress-test, conceptually not dissimilar to structural health monitoring and damage detection, but here directed toward the lead-up to resonance.


Author(s):  
Ying Liu ◽  
Tairong Zhu ◽  
Yunlai Liao ◽  
Jiaqi Li ◽  
Jun Dai

Abstract Miniaturization has increasingly become a crucial prerequisite in various magnetorheological (MR) drive application scenarios. Owing to their high controllability and low response time, MR rotary actuators are developed for numerous feasible actuation solutions. However, the incident low degradation efficiency in the miniaturization limits the application of MR rotary actuators. In addition to torque capacity, structural simplification and easy machinability are also essential for miniaturization. In this study, a novel lamellar excitation structure (LES), which is interleaved with induction coils and ring-shaped iron cores, is proposed to improve the comprehensive performance of a miniature MR rotary actuator. The optimisation of the magnetic field distribution is realised by adopting an equivalent magnetic modelling method. The miniature MR actuator is incorporated into a turbine generator to evaluate the torque capability of the proposed LES-incorporated MR actuator via a kinematic model of the rotating shaft. The LES-incorporated MR rotary actuator demonstrates more favourable deceleration efficiency and torque capacity than conventional MR rotary actuators. The speed reduction per unit power Δn/P can be increased by 500% at most. The torque enhancement ratio-to-volume ratio (TEVR) value of LES is approximately 80 times higher than that of other optimised structures. We believe that this study is significant in improving the comprehensive performance of miniature MR rotary actuators, expanding the applications of MR actuators in miniaturised scenarios.


2021 ◽  
Vol 87 (11) ◽  
pp. 43-54
Author(s):  
M. V. Zernin ◽  
A. V. Matyuhin ◽  
N. N. Rybkin

Fatigue damage to babbitt layers of plain bearings is often manifested during operation. The goal of the study is to develop a model for accumulation of the fatigue damage and destruction of antifriction materials and layers of plain bearings. A generalized fatigue diagram of tin-based babbitts including the main stages of fatigue damage and a diagram of the fatigue damage development in the antifriction layer of plain bearings are presented. The generalized model of V. V. Bolotin for damage accumulation and destruction is modified with regard to antifriction materials containing rather large structural elements. An explicit (direct) modeling of damage processes appeared possible for such materials. The model describes dissipated accumulation of microcracks (interpreted as destruction of the elements of the material structure), initiation and development of a system of short cracks, initiation and development of macro-cracks up to the limit state of the object. The model suggests discretization of the volume into sections with constant levels of complex stress state and discretization of the time axis into the intervals (blocks of loading cycles). The problem of identifying the parameters of a multistage model of the fatigue damage accumulation in the alloy is solved proceeding from the analysis of the results of testing babbitt specimens. We used the simplest optimization procedure, i.e., the method of deformable polyhedron. The parameters of the power function in the dependence of the rate of microdamage accumulation on the level of stresses are obtained. The parameters of the initiation and development of the crack system in the babbitt layer are obtained from the analysis of experimental results of studying steel-babbitt samples. The problem of calculating the durability of antifriction babbitt layers required the development of a new software. The program is examined by comparing calculated and experimental values of the durability of fatigue-tested bearing specimens forced against a rotating shaft by varying cyclic load. The calculated values of the durability match the experimental which confirms the performance of the calculated model.


CORROSION ◽  
10.5006/3939 ◽  
2021 ◽  
Author(s):  
Jonas da Silva de Sa ◽  
Wenlong Ma ◽  
Joshua Owen ◽  
Yong Hua ◽  
Anne Neville ◽  
...  

The effect of the water-saturated supercritical carbon dioxide flow rate on the corrosion behaviour of API 5L X80 steel at a temperature of 35 oC and pressure of 80 bar was investigated. Tests were carried out with the samples attached to a rotating shaft inside an autoclave. Results indicate that increasing the scCO2 flow rate had no significant influence on the general/localized corrosion rate under the various dynamic conditions considered. The average general corrosion rate was 0.064 mm/year, while the average measured pitting penetration rates were one order of magnitude higher. The size of the corrosion features on the surface of the samples, which were believed to provide an indication as to the size of the condensed water droplets, were much smaller than the calculated critical droplet size needed to be displaced by the flow, supporting the theory as to why flow rate had little effect on the corrosion response.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012050
Author(s):  
G A Kushner

Abstract The paper proposes an approach to the registration of vibrations parameters to increase the reliability and predict the durability of technical systems with a continuously rotating shaft. For systems with stochastic loads, such as a ship’s shaft line, the actual measurement of shaft stresses and deformations is an actual way to prevent failures and non-destructive testing under operating conditions. The adaptation of the dynamic strain measurement method made it possible to develop a software and hardware complex for recording and analysing transverse, torsional and longitudinal vibrations of shafts. The design of a hardware complex consisting of a measuring mobile and stator modules connected by a wireless network that allows dynamic strain measurement is proposed. The connection diagram and the main metrological and technical characteristics of the modules are given. To test the operability of the hardware complex, an experimental installation was built that allows carrying out investigation of the shaft line vibrations in real operation conditions. Experimental data are presented, the analysis of which allows us to predict the durability of the system.


Sign in / Sign up

Export Citation Format

Share Document