Computational fluid dynamics of dual fluidized bed gasifiers for syngas production: Cold flow studies

Author(s):  
Naresh Hanchate ◽  
Vikramsinha S. Korpale ◽  
C.S. Mathpati ◽  
S.P. Deshmukh ◽  
V.H. Dalvi
2017 ◽  
Vol 316 ◽  
pp. 469-475 ◽  
Author(s):  
Maximilian A. Habl ◽  
Andreas Frohner ◽  
Gregor Tondl ◽  
Christoph Pfeifer

2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Subhodeep Banerjee ◽  
Ramesh K. Agarwal

Chemical-looping combustion (CLC) is a next-generation combustion technology that shows great promise in addressing the need for high-efficiency low-cost carbon capture from fossil fueled power plants. Although there have been a number of experimental studies on CLC in recent years, computational fluid dynamics (CFD) simulations have been limited in the literature. In this paper, simulation of a CLC reactor is conducted using the Eulerian approach in the commercial CFD solver ansys fluent based on a laboratory-scale experiment with a dual fluidized bed CLC reactor. The solid phase consists of a Fe-based oxygen carrier while the gaseous fuel used is syngas. The salient features of the fluidization behavior in the air reactor and fuel reactor beds representing a riser and a bubbling bed, respectively, as well as the down-comer, are accurately captured in the simulation. This work is among the few CFD simulations of a complete circulating dual fluidized bed system for CLC in 3D in the literature. It highlights the importance of 3D simulation of CLC systems and the need for more accurate empirical reaction rate data for future CLC simulations.


Author(s):  
Cong-Binh Dinh ◽  
Shu-San Hsiau ◽  
Chien-Yuan Su ◽  
Meng-Yuan Tsai ◽  
Yi-Shun Chen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 189-203
Author(s):  
A. Lunzer ◽  
S. Kraft ◽  
S. Müller ◽  
H. Hofbauer

Author(s):  
Sebastian Alexander Pérez Cortés ◽  
Yerko Rafael Aguilera Carvajal ◽  
Juan Pablo Vargas Norambuena ◽  
Javier Antonio Norambuena Vásquez ◽  
Juan Andrés Jarufe Troncoso ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Selina Hafner ◽  
Max Schmid ◽  
Günter Scheffknecht

Finding a way for mitigating climate change is one of the main challenges of our generation. Sorption-enhanced gasification (SEG) is a process by which syngas as an important intermediate for the synthesis of e.g., dimethyl ether (DME), bio-synthetic natural gas (SNG) and Fischer–Tropsch (FT) products or hydrogen can be produced by using biomass as feedstock. It can, therefore, contribute to a replacement for fossil fuels to reduce greenhouse gas (GHG) emissions. SEG is an indirect gasification process that is operated in a dual-fluidized bed (DFB) reactor. By the use of a CO2-active sorbent as bed material, CO2 that is produced during gasification is directly captured. The resulting enhancement of the water–gas shift reaction enables the production of a syngas with high hydrogen content and adjustable H2/CO/CO2-ratio. Tests were conducted in a 200 kW DFB pilot-scale facility under industrially relevant conditions to analyze the influence of gasification temperature, steam to carbon (S/C) ratio and weight hourly space velocity (WHSV) on the syngas production, using wood pellets as feedstock and limestone as bed material. Results revealed a strong dependency of the syngas composition on the gasification temperature in terms of permanent gases, light hydrocarbons and tars. Also, S/C ratio and WHSV are parameters that can contribute to adjusting the syngas properties in such a way that it is optimized for a specific downstream synthesis process.


2016 ◽  
Vol 152 ◽  
pp. 116-123 ◽  
Author(s):  
L.F. de Diego ◽  
F. García-Labiano ◽  
P. Gayán ◽  
A. Abad ◽  
T. Mendiara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document