Comparison of a Suspended Radiation Protection System versus Standard Lead Apron for Radiation Exposure of a Simulated Interventionalist

2011 ◽  
Vol 22 (4) ◽  
pp. 437-442 ◽  
Author(s):  
Daniel A. Marichal ◽  
Temoor Anwar ◽  
David Kirsch ◽  
Jessica Clements ◽  
Luke Carlson ◽  
...  
2015 ◽  
Vol 8 (10) ◽  
pp. 1052-1055 ◽  
Author(s):  
Diogo C Haussen ◽  
Imramsjah Martijn John Van Der Bom ◽  
Raul G Nogueira

Background and purposeWe aimed to compare the performance of the ZeroGravity (ZG) system (radiation protection system composed by a suspended lead suit) against the use of standard protection (lead apron (LA), thyroid shield, lead eyeglasses, table skirts, and ceiling suspended shield) in neuroangiography procedures.Materials and methodsRadiation exposure data were prospectively collected in consecutive neuroendovascular procedures between December 2014 and February 2015. Operator No 1 was assigned to the use of an LA (plus lead glasses, thyroid shield, and a 1 mm hanging shield at the groin) while operator No 2 utilized the ZG system. Dosimeters were used to measure peak skin dose for the head, thyroid, and left foot.ResultsThe two operators performed a total of 122 procedures during the study period. The ZG operator was more commonly the primary operator compared with the LA operator (85% vs 71%; p=0.04). The mean anterior-posterior (AP), lateral, and cumulative dose area product (DAP) radiation exposure as well as the mean fluoroscopy time were not statistically different between the operators’ cases. The peak skin dose to the head of the operator with LA was 2.1 times higher (3380 vs 1600 μSv), while the thyroid was 13.9 (4460 vs 320 μSv), the mediastinum infinitely (520 vs 0 μSv), and the foot 3.3 times higher (4870 vs 1470 μSv) compared with the ZG operator, leading to an overall accumulated dose 4 times higher. The ratio of cumulative operator received dose/total cumulative DAP was 2.5 higher on the LA operator.ConclusionsThe ZG radiation protection system leads to substantially lower radiation exposure to the operator in neurointerventional procedures. However, substantial exposure may still occur at the level of the lens and thyroid to justify additional protection.


Author(s):  
Almas Syed ◽  
Robert Evans Heithaus ◽  
Chet R. Rees

The increasing utilization of radiation for diagnostic and therapeutic procedures has provided impetus for improved strategies of radiation protection for interventionalists. The associated discomfort, disability, and career-shortening effects of lead aprons for heavy fluoroscopy users have served as an impetus for the development of lighter and more comfortable models. A suspended radiation protection system employs the use of a “weightless” shield resembling a thick large lead apron with head shield and arm shields. The shield moves with the operator like a garment, providing extensive protection without orthopedic strain or discomfort while maintaining full user functionality. Utilization of a suspended radiation protection system provides the operator with optimum radiation protection, without any additional weight, and maintains procedural flexibility.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1099
Author(s):  
Peter Dankerl ◽  
Matthias Stefan May ◽  
Christian Canstein ◽  
Michael Uder ◽  
Marc Saake

This study aimed to evaluate the radiation exposure to the radiologist and the procedure time of prospectively matched CT interventions implementing three different workflows—the radiologist—(I) leaving the CT room during scanning; (II) wearing a lead apron and staying in the CT room; (III) staying in the CT room in a prototype radiation protection cabin without lead apron while utilizing a wireless remote control and a tablet. We prospectively evaluated the radiologist’s radiation exposure utilizing an electronic personal dosimeter, the intervention time, and success in CT interventions matched to the three different workflows. We compared the interventional success, the patient’s dose of the interventional scans in each workflow (total mAs and total DLP), the radiologist’s personal dose (in µSV), and interventional time. To perform workflow III, a prototype of a radiation protection cabin, with 3 mm lead equivalent walls and a foot switch to operate the doors, was built in the CT examination room. Radiation exposure during the maximum tube output at 120 kV was measured by the local admission officials inside the cabin at the same level as in the technician’s control room (below 0.5 μSv/h and 1 mSv/y). Further, to utilize the full potential of this novel workflow, a sterile packed remote control (to move the CT table and to trigger the radiation) and a sterile packed tablet anchored on the CT table (to plan and navigate during the CT intervention) were operated by the radiologist. There were 18 interventions performed in workflow I, 16 in workflow II, and 27 in workflow III. There were no significant differences in the intervention time (workflow I: 23 min ± 12, workflow II: 20 min ± 8, and workflow III: 21 min ± 10, p = 0.71) and the patient’s dose (total DLP, p = 0.14). However, the personal dosimeter registered 0.17 ± 0.22 µSv for workflow II, while I and III both documented 0 µSv, displaying significant difference (p < 0.001). All workflows were performed completely and successfully in all cases. The new workflow has the potential to reduce interventional CT radiologists’ radiation dose to zero while relieving them from working in a lead apron all day.


2002 ◽  
Vol 41 (06) ◽  
pp. 245-251 ◽  
Author(s):  
M. Knietsch ◽  
T. Spillmann ◽  
E.-G. Grünbaum ◽  
R. Bauer ◽  
M. Puille

SummaryAim: Establishment of radioiodine treatment of feline hyperthyroidism in veterinary routine in accordance with German radiation protection regulations. Patients and methods: 35 cats with proven hyperthyroidism were treated with 131I in a special ward. Thyroid uptake and effective halflife were determined using gammacamera dosimetry. Patients were released when measured whole body activity was below the limit defined in the German “Strahlenschutzverordnung”. Results: 17/20 cats treated with 150 MBq radioiodine and 15/15 cats treated with 250 MBq had normal thyroid function after therapy, normal values for FT3 and FT4 were reached after two and normal TSH levels after three weeks. In 14 cats normal thyroid function was confirmed by controls 3-6 months later. Thyroidal iodine uptake was 24 ± 10%, effective halflife 2.5 ± 0.7 days. Whole body activity <1 MBq was reached 13 ± 4 days after application of 131I. Radiation exposure of cat owners was estimated as 1.97 Sv/MBq for adults. Conclusion: Radioiodine therapy of feline hyper-thyroidism is highly effective and safe. It can easily be performed in accordance with German radiation protection regulations, although this requires hospitalisation for approximately two weeks. Practical considerations on radiation exposure of cat owners do not justify this long interval. Regulations for the veterinary use of radioactive substances similar to existing regulations for medical use in humans are higly desirable.


1985 ◽  
Author(s):  
M. Bamberg ◽  
D. van Beuningen ◽  
W. Gössner ◽  
Friedrich Heuck ◽  
H. Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document