zero gravity
Recently Published Documents


TOTAL DOCUMENTS

607
(FIVE YEARS 86)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Vol 118 (48) ◽  
pp. e2111214118
Author(s):  
Benjamin Apffel ◽  
Samuel Hidalgo-Caballero ◽  
Antonin Eddi ◽  
Emmanuel Fort

Gravity shapes liquids and plays a crucial role in their internal balance. Creating new equilibrium configurations irrespective of the presence of a gravitational field is challenging with applications on Earth as well as in zero-gravity environments. Vibrations are known to alter the shape of liquid interfaces and also to change internal dynamics and stability in depth. Here, we show that vibrations can also create an “artificial gravity” in any direction. We demonstrate that a liquid can maintain an inclined interface when shaken in an arbitrary direction. A necessary condition for the equilibrium to occur is the existence of a velocity gradient determined by dynamical boundary conditions. However, the no-slip boundary condition and incompressibility can perturb the required velocity profile, leading to a destabilization of the equilibrium. We show that liquid layers provide a solution, and liquid walls of several centimeters in height can thus be stabilized. We show that the buoyancy equilibrium is not affected by the forcing.


2021 ◽  
Author(s):  
Irina V. Khromova ◽  
Elizaveta V. Belyaeva ◽  
Elizaveta P. Chushkina ◽  
Elizaveta S. Gagarkina

Author(s):  
Haijun Mo ◽  
Hang Zhao ◽  
Xiaowu Wang ◽  
Rui Cao ◽  
Zhenping Wan ◽  
...  

Abstract A kind of stainless-steel heat pipe with sintered fiber wick is investigated with the aim to improve the heat dissipation when it is used in spent fuel pool in nuclear power plant. The effects of test angle, porosity and the filling rate on the heat transfer performance of the heat pipe are studied. At test angle 90°, the permeability plays an important role on the power limit since gravity can provide the necessary driving force. Larger porosity involves with poor heat conductivity although it results in better permeability. When test angle is zero gravity is no longer the driving force. In this case, the evaporation section can still avoid dry burning because part of the evaporation section is dipped in the deionized water. Therefore, permeability and filling ratio are two important factors influencing the power limit. Filling rate determines the vapor flowing space. When test angle is smaller than zero, gravity becomes resistance force. Then the lag tension and the filling rate exert greatest influence on the performance of the heat pipe. Smaller porosity corresponds to smaller contact angle.


2021 ◽  
Vol 928 ◽  
Author(s):  
Enhui Chen ◽  
Feng Xu

Transient Marangoni convection induced by an isothermal sidewall of a rectangular pool under a zero-gravity condition is studied using scaling analysis. Scaling analysis shows that there exist a number of flow regimes in each evolution scenario, depending on the Marangoni number, the Prandtl number and the aspect ratio. In a typical evolution scenario, a horizontal surface flow and a vertical flow adjacent to the sidewall may appear. Additionally, a number of scaling laws of the velocity and thickness of transient Marangoni convection are obtained. Further, numerical simulation is performed for validation of the selected scaling laws. There exits good agreement between the numerical results and the scaling predictions.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Luca Brandt ◽  
Filippo Coletti

This review is motivated by the fast progress in our understanding of the physics of particle-laden turbulence in the last decade, partly due to the tremendous advances of measurement and simulation capabilities. The focus is on spherical particles in homogeneous and canonical wall-bounded flows. The analysis of recent data indicates that conclusions drawn in zero gravity should not be extrapolated outside of this condition, and that the particle response time alone cannot completely define the dynamics of finite-size particles. Several breakthroughs have been reported, mostly separately, on the dynamics and turbulence modifications of small inertial particles in dilute conditions and of large weakly buoyant spheres. Measurements at higher concentrations, simulations fully resolving smaller particles, and theoretical tools accounting for both phases are needed to bridge this gap and allow for the exploration of the fluid dynamics of suspensions, from laminar rheology and granular media to particulate turbulence. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
pp. 117097
Author(s):  
Marc Wende ◽  
Christoph Staggenborg ◽  
Eugeny Y. Kenig

Sign in / Sign up

Export Citation Format

Share Document