peak skin dose
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
pp. 028418512110620
Author(s):  
Joelle Ann Feghali ◽  
Julie Delépierre ◽  
Olivera Ciraj Belac ◽  
Jérémie Dabin ◽  
Marine Deleu ◽  
...  

Background Optimizing patient exposure in interventional cardiology is key to avoid skin injuries. Purpose To establish predictive models of peak skin dose (PSD) during percutaneous coronary intervention (PCI), chronic total occlusion percutaneous coronary intervention (CTO), and transcatheter aortic valve implantation (TAVI) procedures. Material and Methods A total of 534 PCI, 219 CTO, and 209 TAVI were collected from 12 hospitals in eight European countries. Independent associations between PSD and clinical and technical dose determinants were examined for those procedures using multivariate statistical analysis. A priori and a posteriori predictive models were built using stepwise multiple linear regressions. A fourfold cross-validation was performed, and models’ performance was evaluated using the root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R²), and linear correlation coefficient (r). Results Multivariate analysis proved technical parameters to overweight clinical complexity indices with PSD mainly affected by fluoroscopy time, tube voltage, tube current, distance to detector, and tube angulation for PCI. For CTO, these were body mass index, tube voltage, and fluoroscopy contribution. For TAVI, these parameters were sex, fluoroscopy time, tube voltage, and cine acquisitions. When benchmarking the predictive models, the correlation coefficients were r = 0.45 for the a priori model and r = 0.89 for the a posteriori model for PCI. These were 0.44 and 0.67, respectively, for the CTO a priori and a posteriori models, and 0.58 and 0.74, respectively, for the TAVI a priori and a posteriori models. Conclusion A priori predictive models can help operators estimate the PSD before performing the intervention while a posteriori models are more accurate estimates and can be useful in the absence of skin dose mapping solutions


2021 ◽  
pp. 20200924
Author(s):  
Alisha Coates ◽  
Andy Rogers

Objective: The patient dose monitoring systems DoseWatch and DoseWise were compared to evaluate their reported patient Peak Skin Dose. Methods: 20 patients with the highest Peak Skin Dose on DoseWise were obtained; the values were converted to a Reference Point Air Kerma (RPAK) value and used for comparison. These patients were accessed in DoseWatch to obtain the recorded Worst Case RPAK. The co-ordinates for the position were obtained for each patient to find a primary and secondary angular position for the peak skin dose. The two positions produced by the two softwares were compared. Results: There is a mean deviation of over 0.5 Gy between the two software packages when comparing the calculated maximum skin air kerma Peak skin dose from DoseWise and the Worst Case RPAK from DoseWatch. Conclusion: We have shown mean deviations between these two systems. This difference is enough, for higher peak skin absorbed dose patients, to change the management of patients, so local services must understand their models to properly implement patient management. Advances in knowledge: Neither system is incorrect, but these differences show that a deeper understanding of the analysis limitations is required to properly inform post-procedural high-skin dose follow-up procedures.


Author(s):  
A. Kyle Jones ◽  
Meghan E. Kisiel ◽  
X. John Rong ◽  
Alda L. Tam
Keyword(s):  

Author(s):  
Reinhard Loose ◽  
Michael Wucherer

AbstractPatients in fluoroscopically guided interventions (FGI) may be exposed to substantial radiation dose levels (SRDL). The most commonly reported adverse reactions are skin injuries with erythema or necrosis. It is therefore important for the interventional radiologist to know deterministic effects with their threshold doses. If possible all relevant modality parameters should be displayed on the interventionalists screen. Dosimetric parameters should be displayed in digital imaging and communications in medicine (DICOM) units and stored as DICOM Radiation Dose Structured Report (RDSR). The peak skin dose (PSD) is the most relevant risk parameter for skin injuries. Dose management systems (DMS) help optimising radiation exposure of patients. However, their calculation of skin dose maps is only available after a FGI. Therefore, dose maps and PSD should preferably be calculated and displayed in real time by the modality.


Author(s):  
Nicolas Sas ◽  
Florian Magnier ◽  
Eléonore Pouget ◽  
Véronique Dedieu ◽  
Joël Guersen ◽  
...  
Keyword(s):  

2020 ◽  
Vol 190 (4) ◽  
pp. 392-399
Author(s):  
Chadia Rizk ◽  
Antoine Sarkis ◽  
Alice Bejjani ◽  
Jérémie Dabin ◽  
Jad Farah

Abstract This paper aims to validate the accuracy of the peak skin dose (Dskin,max) computed by the Dose Map software (DMS)—general electric and establish a local follow-up protocol for the management of patient skin injuries following complex interventional cardiology procedures (ICPs). Dskin,max was computed by the DMS and was simultaneously measured by a dense mesh of 72 thermoluminescent dosemeters for 20 ICP. Measured and computed Dskin,max were compared using Lin’s concordance coefficient (${\rho}_c$). The implementation of a local follow-up strategy was based on a computed Dskin,max of 2 Gy. After eliminating 2 outliers, the average deviation between the two methods was 6% (range: −36 to +40%). Concordance between the two methods was moderate with ${\rho}_c$ (confidence interval) of 0.9128 (0.8541–0.9486). DMS computes Dskin,max with an acceptable accuracy and can be used to setup an individual follow-up process for patients with high skin exposure and risks.


2020 ◽  
Vol 188 (4) ◽  
pp. 508-515 ◽  
Author(s):  
M Krajinović ◽  
M Dobrić ◽  
O Ciraj-Bjelac

Abstract Numerous cases of radiation-induced tissue reactions following interventional cardiology (IC) procedures have been reported, resulting in the need for an optimized and personalized dosimetry. At present, there are many fluoroscopy units without Digital Imaging and Communications in Medicine (DICOM) Radiation Dose Structured Report globally installed. Many of these have not been updated yet, and may never be, therefore, the main objectives of this paper are to develop an offline skin dose mapping application, which uses DICOM headers for the peak skin dose (PSD) assessment and to compare the PSD assessment results to XR-RV3 Gafchromic film for common IC procedures. The mean deviation between the measured and the calculated PSD was 8.7 ± 26.3%. Simulated skin dose map showed good matching with XR-RV3 Gafchromic film. The skin dose mapping application presented in this paper is an elegant solution and a suitable alternative to XR-RV3 Gafchromic film.


2020 ◽  
Vol 188 (3) ◽  
pp. 322-331
Author(s):  
Ljubisa Borota ◽  
Andreas Patz

Abstract Aim of the study: The aim of this study was to describe a new functionality aimed at X-ray dose reduction, referred to as spot region of interest (Spot ROI) and to compare it with existing dose-saving functionalities, spot fluoroscopy (Spot F), and conventional collimation (CC). Material and methods: Dose area product, air kerma, and peak skin dose were measured for Spot ROI, Spot F, and CC in three different fields of view (FOVs) 20 × 20 cm, 15 × 15 cm, and 11 × 11 cm using an anthropomorphic head phantom RS-230T. The exposure sequence was 5 min of pulsed fluoroscopy (7.5 pulses per s) followed by 7× digital subtraction angiography (DSA) runs with 30 frames per DSA acquisition (3 fps × 10 s). The collimation in Spot F and CC was adjusted such that the size of the anatomical area exposed was as large as the Spot ROI area in each FOV. Results: The results for all FOVs were the following: for the fluoroscopy, all measured parameters for Spot ROI and Spot F were lower than corresponding values for CC. For DSA and DSA plus fluoroscopy, all measured parameters for Spot ROI were lower than corresponding parameters for Spot F and CC. Conclusion: Spot ROI is a promising dose-saving technology that can be applied in fluoroscopy and acquisition. The biggest benefit of Spot ROI is its ability to keep the entire FOV information always visible.


Sign in / Sign up

Export Citation Format

Share Document