Use of sequential pneumatic compression devices to reduce thoracic duct catheterization procedure time

2017 ◽  
Vol 28 (2) ◽  
pp. S133-S134
Author(s):  
Q Meisinger ◽  
G Nadolski ◽  
M Itkin
1960 ◽  
Vol 38 (6) ◽  
pp. 954-956 ◽  
Author(s):  
Allan E. Dumont ◽  
John H. Mulholland

2015 ◽  
Vol 18 (5) ◽  
pp. 208
Author(s):  
Erhan Kaya ◽  
Hakan Fotbolcu ◽  
Zeki Şimşek ◽  
Ömer Işık

We report a 61-year-old patient who suffered from a type A aortic dissection that mimicked an acute inferior myocardial infarction. During a routine cardiac catheterization procedure, diagnostic catheters can be inserted accidentally into the false lumen. Invasive cardiologists should keep this complication in mind.


Diabetes ◽  
1993 ◽  
Vol 42 (5) ◽  
pp. 720-731 ◽  
Author(s):  
G. M. Steil ◽  
M. A. Meador ◽  
R. N. Bergman

Diabetes ◽  
1994 ◽  
Vol 43 (2) ◽  
pp. 180-190 ◽  
Author(s):  
R. A. Poulin ◽  
G. M. Steil ◽  
D. M. Moore ◽  
M. Ader ◽  
R. N. Bergman

2021 ◽  
Vol 09 (02) ◽  
pp. E233-E238
Author(s):  
Rajesh N. Keswani ◽  
Daniel Byrd ◽  
Florencia Garcia Vicente ◽  
J. Alex Heller ◽  
Matthew Klug ◽  
...  

Abstract Background and study aims Storage of full-length endoscopic procedures is becoming increasingly popular. To facilitate large-scale machine learning (ML) focused on clinical outcomes, these videos must be merged with the patient-level data in the electronic health record (EHR). Our aim was to present a method of accurately linking patient-level EHR data with cloud stored colonoscopy videos. Methods This study was conducted at a single academic medical center. Most procedure videos are automatically uploaded to the cloud server but are identified only by procedure time and procedure room. We developed and then tested an algorithm to match recorded videos with corresponding exams in the EHR based upon procedure time and room and subsequently extract frames of interest. Results Among 28,611 total colonoscopies performed over the study period, 21,170 colonoscopy videos in 20,420 unique patients (54.2 % male, median age 58) were matched to EHR data. Of 100 randomly sampled videos, appropriate matching was manually confirmed in all. In total, these videos represented 489,721 minutes of colonoscopy performed by 50 endoscopists (median 214 colonoscopies per endoscopist). The most common procedure indications were polyp screening (47.3 %), surveillance (28.9 %) and inflammatory bowel disease (9.4 %). From these videos, we extracted procedure highlights (identified by image capture; mean 8.5 per colonoscopy) and surrounding frames. Conclusions We report the successful merging of a large database of endoscopy videos stored with limited identifiers to rich patient-level data in a highly accurate manner. This technique facilitates the development of ML algorithms based upon relevant patient outcomes.


2008 ◽  
Vol 11 (4) ◽  
pp. 149 ◽  
Author(s):  
Artur Schander ◽  
Melissa K. Bearden ◽  
Jamie B. Huff ◽  
Arthur Williams ◽  
Scott T. Stoll ◽  
...  

Author(s):  
Sandeep Bagla ◽  
Rachel Piechowiak ◽  
Abin Sajan ◽  
Julie Orlando ◽  
A Diego Hipolito Canario ◽  
...  

Abstract Purpose: Genicular artery embolization (GAE) has been proposed as a novel technique to treat painful synovitis related to osteoarthritis. An in-depth understanding of the genicular arterial anatomy is crucial to achieve technical success and avoid nontarget-related complications. Given the lack of previous angiographic description, the present study analyzes genicular arterial anatomy and proposes an angiographic classification system. Materials and Methods: Angiographic findings from 41 GAEs performed during two US clinical trials from January 2017 to July 2019 were reviewed to analyze the anatomical details of the following vessels: descending genicular artery (DGA), medial superior genicular artery (MSGA), medial inferior genicular artery (MIGA), lateral superior genicular artery (LSGA), lateral inferior genicular artery (LIGA), and anterior tibial recurrent artery (ATRA). The diameter, angle of origin, and anastomotic pathways were recorded for each vessel. The branching patterns were classified as: medially, M1 (3/3 arteries present) vs M2 (2/3 arteries present); and laterally, L1 (3/3 arteries present) vs L2 (2/3 arteries present). Results: A total of 91 genicular arteries were embolized: DGA (26.4%), MIGA (23.1%), MSGA (22.0%), LIGA (14.3%), and LSGA/ATRA (14.3%). The branching patterns were: medially = M1, 74.4% (n = 29), M2, 25.6% (n = 10); and laterally = L1, 94.9% (n = 37), L2, 5.1% (n = 2). A common origin for MSGA and LSGA was noted in 11 patients (28.2%). A direct DGA origin from the popliteal artery was reported in three patients (7.7%, n = 3). Conclusions: A thorough understanding of the geniculate arterial anatomy is important for maximizing postprocedural pain reduction while minimizing complications, procedure time, and radiation exposure during GAE.


Sign in / Sign up

Export Citation Format

Share Document