Multi-feature based Question–Answerer Model Matching for predicting response time in CQA

2019 ◽  
Vol 182 ◽  
pp. 104794 ◽  
Author(s):  
YueLiu ◽  
Aihua Tang ◽  
FeiCai ◽  
Pengfei Ren ◽  
Zhibin Sun
Author(s):  
Carol S. Clark ◽  
Anthony L. Luk ◽  
Charles A. McNary

2018 ◽  
Author(s):  
Shiva Farashahi ◽  
Katherine Rowe ◽  
Zohra Aslami ◽  
M Ida Gobbini ◽  
Alireza Soltani

AbstractMeasurements of response time (RT) have long been used to infer neural processes underlying various cognitive functions such as working memory, attention, and decision making. However, it is currently unknown if RT is also informative about various stages of value-based choice, particularly how reward values are constructed. To investigate these questions, we analyzed the pattern of RT during a set of multi-dimensional learning and decision-making tasks that can prompt subjects to adopt different learning strategies. In our experiments, subjects could use reward feedback to directly learn reward values associated with possible choice options (object-based learning). Alternatively, they could learn reward values of options’ features (e.g. color, shape) and combine these values to estimate reward values for individual options (feature-based learning). We found that RT was slower when the difference between subjects’ estimates of reward probabilities for the two alternative objects on a given trial was smaller. Moreover, RT was overall faster when the preceding trial was rewarded or when the previously selected object was present. These effects, however, were mediated by an interaction between these factors such that subjects were faster when the previously selected object was present rather than absent but only after unrewarded trials. Finally, RT reflected the learning strategy (i.e. object-based or feature-based approach) adopted by the subject on a trial-by-trial basis, indicating an overall faster construction of reward value and/or value comparison during object-based learning. Altogether, these results demonstrate that the pattern of RT can be informative about how reward values are learned and constructed during complex value-based learning and decision making.


2017 ◽  
Author(s):  
Bichen Jing ◽  
Matthew Yuen ◽  
Kai Tang ◽  
Gang Zhao

Author(s):  
Roberto Limongi ◽  
Angélica M. Silva

Abstract. The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production – where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.


2000 ◽  
Author(s):  
Michael Anthony ◽  
Robert W. Fuhrman
Keyword(s):  

2014 ◽  
Author(s):  
Gabriel Tillman ◽  
Don van Ravenzwaaij ◽  
Scott Brown ◽  
Titia Benders

Sign in / Sign up

Export Citation Format

Share Document