scholarly journals A note on additive mappings decreasing rank one

2006 ◽  
Vol 414 (2-3) ◽  
pp. 428-434 ◽  
Author(s):  
Ming-Huat Lim
Keyword(s):  
Rank One ◽  
2003 ◽  
Vol 367 ◽  
pp. 213-224 ◽  
Author(s):  
Wu Jing ◽  
Pengtong Li ◽  
Shijie Lu

1993 ◽  
Vol 182 ◽  
pp. 239-256 ◽  
Author(s):  
Matjaž Omladič ◽  
Peter Šemrl
Keyword(s):  
Rank One ◽  

2002 ◽  
Vol 348 (1-3) ◽  
pp. 175-187 ◽  
Author(s):  
Bojan Kuzma
Keyword(s):  
Rank One ◽  

Author(s):  
Najat Muthana ◽  
◽  
Asma Ali ◽  
Kapil Kumar

1970 ◽  
Vol 11 (8) ◽  
pp. 2415-2424 ◽  
Author(s):  
M. Anthea Grubb ◽  
D. B. Pearson

1972 ◽  
Vol 46 ◽  
pp. 97-109
Author(s):  
Susan Williamson

Let k denote the quotient field of a complete discrete rank one valuation ring R of unequal characteristic and let p denote the characteristic of R̅; assume that R contains a primitive pth root of unity, so that the absolute ramification index e of R is a multiple of p — 1, and each Gallois extension K ⊃ k of degree p may be obtained by the adjunction of a pth root.


2020 ◽  
Vol 11 (2) ◽  
pp. 1-33
Author(s):  
Haibing Lu ◽  
Xi Chen ◽  
Junmin Shi ◽  
Jaideep Vaidya ◽  
Vijayalakshmi Atluri ◽  
...  

Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


Sign in / Sign up

Export Citation Format

Share Document