ACM Transactions on Management Information Systems
Latest Publications


TOTAL DOCUMENTS

251
(FIVE YEARS 129)

H-INDEX

22
(FIVE YEARS 8)

Published By Association For Computing Machinery

2158-656x

2022 ◽  
Vol 13 (1) ◽  
pp. 1-17
Author(s):  
Ankit Kumar ◽  
Abhishek Kumar ◽  
Ali Kashif Bashir ◽  
Mamoon Rashid ◽  
V. D. Ambeth Kumar ◽  
...  

Detection of outliers or anomalies is one of the vital issues in pattern-driven data mining. Outlier detection detects the inconsistent behavior of individual objects. It is an important sector in the data mining field with several different applications such as detecting credit card fraud, hacking discovery and discovering criminal activities. It is necessary to develop tools used to uncover the critical information established in the extensive data. This paper investigated a novel method for detecting cluster outliers in a multidimensional dataset, capable of identifying the clusters and outliers for datasets containing noise. The proposed method can detect the groups and outliers left by the clustering process, like instant irregular sets of clusters (C) and outliers (O), to boost the results. The results obtained after applying the algorithm to the dataset improved in terms of several parameters. For the comparative analysis, the accurate average value and the recall value parameters are computed. The accurate average value is 74.05% of the existing COID algorithm, and our proposed algorithm has 77.21%. The average recall value is 81.19% and 89.51% of the existing and proposed algorithm, which shows that the proposed work efficiency is better than the existing COID algorithm.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-20
Author(s):  
Shui-Hua Wang ◽  
Xin Zhang ◽  
Yu-Dong Zhang

( Aim ) COVID-19 has caused more than 2.28 million deaths till 4/Feb/2021 while it is still spreading across the world. This study proposed a novel artificial intelligence model to diagnose COVID-19 based on chest CT images. ( Methods ) First, the two-dimensional fractional Fourier entropy was used to extract features. Second, a custom deep stacked sparse autoencoder (DSSAE) model was created to serve as the classifier. Third, an improved multiple-way data augmentation was proposed to resist overfitting. ( Results ) Our DSSAE model obtains a micro-averaged F1 score of 92.32% in handling a four-class problem (COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy control). ( Conclusion ) Our method outperforms 10 state-of-the-art approaches.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-22
Author(s):  
Tomasz Miksa ◽  
Simon Oblasser ◽  
Andreas Rauber

Many research funders mandate researchers to create and maintain data management plans (DMPs) for research projects that describe how research data is managed to ensure its reusability. A DMP, being a static textual document, is difficult to act upon and can quickly become obsolete and impractical to maintain. A new generation of machine-actionable DMPs (maDMPs) was therefore proposed by the Research Data Alliance to enable automated integration of information and updates. maDMPs open up a variety of use cases enabling interoperability of research systems and automation of data management tasks. In this article, we describe a system for machine-actionable data management planning in an institutional context. We identify common use cases within research that can be automated to benefit from machine-actionability of DMPs. We propose a reference architecture of an maDMP support system that can be embedded into an institutional research data management infrastructure. The system semi-automates creation and maintenance of DMPs, and thus eases the burden for the stakeholders responsible for various DMP elements. We evaluate the proposed system in a case study conducted at the largest technical university in Austria and quantify to what extent the DMP templates provided by the European Commission and a national funding body can be pre-filled. The proof-of-concept implementation shows that maDMP workflows can be semi-automated, thus workload on involved parties can be reduced and quality of information increased. The results are especially relevant to decision makers and infrastructure operators who want to design information systems in a systematic way that can utilize the full potential of maDMPs.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Byron Marshall ◽  
Michael Curry ◽  
Robert E. Crossler ◽  
John Correia

Survey items developed in behavioral Information Security (InfoSec) research should be practically useful in identifying individuals who are likely to create risk by failing to comply with InfoSec guidance. The literature shows that attitudes, beliefs, and perceptions drive compliance behavior and has influenced the creation of a multitude of training programs focused on improving ones’ InfoSec behaviors. While automated controls and directly observable technical indicators are generally preferred by InfoSec practitioners, difficult-to-monitor user actions can still compromise the effectiveness of automatic controls. For example, despite prohibition, doubtful or skeptical employees often increase organizational risk by using the same password to authenticate corporate and external services. Analysis of network traffic or device configurations is unlikely to provide evidence of these vulnerabilities but responses to well-designed surveys might. Guided by the relatively new IPAM model, this study administered 96 survey items from the Behavioral InfoSec literature, across three separate points in time, to 217 respondents. Using systematic feature selection techniques, manageable subsets of 29, 20, and 15 items were identified and tested as predictors of non-compliance with security policy. The feature selection process validates IPAM's innovation in using nuanced self-efficacy and planning items across multiple time frames. Prediction models were trained using several ML algorithms. Practically useful levels of prediction accuracy were achieved with, for example, ensemble tree models identifying 69% of the riskiest individuals within the top 25% of the sample. The findings indicate the usefulness of psychometric items from the behavioral InfoSec in guiding training programs and other cybersecurity control activities and demonstrate that they are promising as additional inputs to AI models that monitor networks for security events.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Luo He ◽  
Hongyan Liu ◽  
Yinghui Yang ◽  
Bei Wang

We develop a deep learning model based on Long Short-term Memory (LSTM) to predict blood pressure based on a unique data set collected from physical examination centers capturing comprehensive multi-year physical examination and lab results. In the Multi-attention Collaborative Deep Learning model (MAC-LSTM) we developed for this type of data, we incorporate three types of attention to generate more explainable and accurate results. In addition, we leverage information from similar users to enhance the predictive power of the model due to the challenges with short examination history. Our model significantly reduces predictive errors compared to several state-of-the-art baseline models. Experimental results not only demonstrate our model’s superiority but also provide us with new insights about factors influencing blood pressure. Our data is collected in a natural setting instead of a setting designed specifically to study blood pressure, and the physical examination items used to predict blood pressure are common items included in regular physical examinations for all the users. Therefore, our blood pressure prediction results can be easily used in an alert system for patients and doctors to plan prevention or intervention. The same approach can be used to predict other health-related indexes such as BMI.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-29
Author(s):  
Shi Ming Huang ◽  
David C. Yen ◽  
Ting Jyun Yan ◽  
Yi Ting Yang

Technology trend analysis uses data relevant to historical performance and extrapolates it to estimate and assess the future potential of technology. Such analysis is used to analyze emerging technologies or predict the growing markets that influence the resulting social or economic development to assist in effective decision-making. Traditional trend analysis methods are time-consuming and require considerable labor. Moreover, the implemented processes may largely rely on the specific knowledge of the domain experts. With the advancement in the areas of science and technology, emerging cross-domain trends have received growing attention for its considerable influence on society and the economy. Consequently, emerging cross-domain predictions that combine or complement various technologies or integrate with diverse disciplines may be more critical than other tools and applications in the same domain. This study uses a design science research methodology, a text mining technique, and social network analysis (SNA) to analyze the development trends concerning the presentation of the product or service information on a company's website. This study applies regulatory technology (RegTech) as a case to analyze and justify the emerging cross-disciplinary trend. Furthermore, an experimental study is conducted using the Google search engine to verify and validate the proposed research mechanism at the end of this study. The study results reveal that, compared with Google Trends and Google Correlate, the research mechanism proposed in this study is more illustrative, feasible, and promising because it reduces noise and avoids the additional time and effort required to perform a further in-depth exploration to obtain the information.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-21
Author(s):  
Bo Sun ◽  
Takeshi Takahashi ◽  
Tao Ban ◽  
Daisuke Inoue

To relieve the burden of security analysts, Android malware detection and its family classification need to be automated. There are many previous works focusing on using machine (or deep) learning technology to tackle these two important issues, but as the number of mobile applications has increased in recent years, developing a scalable and precise solution is a new challenge that needs to be addressed in the security field. Accordingly, in this article, we propose a novel approach that not only enhances the performance of both Android malware and its family classification, but also reduces the running time of the analysis process. Using large-scale datasets obtained from different sources, we demonstrate that our method is able to output a high F-measure of 99.71% with a low FPR of 0.37%. Meanwhile, the computation time for processing a 300K dataset is reduced to nearly 3.3 hours. In addition, in classification evaluation, we demonstrate that the F-measure, precision, and recall are 97.5%, 96.55%, 98.64%, respectively, when classifying 28 malware families. Finally, we compare our method with previous studies in both detection and classification evaluation. We observe that our method produces better performance in terms of its effectiveness and efficiency.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-27
Author(s):  
Jiaheng Xie ◽  
Bin Zhang ◽  
Jian Ma ◽  
Daniel Zeng ◽  
Jenny Lo-Ciganic

Hospital readmission refers to the situation where a patient is re-hospitalized with the same primary diagnosis within a specific time interval after discharge. Hospital readmission causes $26 billion preventable expenses to the U.S. health systems annually and often indicates suboptimal patient care. To alleviate those severe financial and health consequences, it is crucial to proactively predict patients’ readmission risk. Such prediction is challenging because the evolution of patients’ medical history is dynamic and complex. The state-of-the-art studies apply statistical models which use static predictors in a period, failing to consider patients’ heterogeneous medical history. Our approach – Trajectory-BAsed DEep Learning (TADEL) – is motivated to tackle the deficiencies of the existing approaches by capturing dynamic medical history. We evaluate TADEL on a five-year national Medicare claims dataset including 3.6 million patients per year over all hospitals in the United States, reaching an F1 score of 87.3% and an AUC of 88.4%. Our approach significantly outperforms all the state-of-the-art methods. Our findings suggest that health status factors and insurance coverage are important predictors for readmission. This study contributes to IS literature and analytical methodology by formulating the trajectory-based readmission prediction problem and developing a novel deep-learning-based readmission risk prediction framework. From a health IT perspective, this research delivers implementable methods to assess patients’ readmission risk and take early interventions to avoid potential negative consequences.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Fan Chen ◽  
Jiaoxiong Xia ◽  
Honghao Gao ◽  
Huahu Xu ◽  
Wei Wei

The management of public opinion and the use of big data monitoring to accurately judge and verify all kinds of information are valuable aspects in the enterprise management decision-making process. The sentiment analysis of reviews is a key decision-making tool for e-commerce development. Most existing review sentiment analysis methods involve sequential modeling but do not focus on the semantic relationships. However, Chinese semantics are different from English semantics in terms of the sentence structure. Irrelevant contextual words may be incorrectly identified as cues for sentiment prediction. The influence of the target words in reviews must be considered. Thus, this paper proposes the TRG-DAtt model for sentiment analysis based on target relational graph (TRG) and double attention network (DAtt) to analyze the emotional information to support decision making. First, dependency tree-based TRG is introduced to independently and fully mine the semantic relationships. We redefine and constrain the dependency and use it as the edges to connect the target and context words. Second, we design dependency graph attention network (DGAT) and interactive attention network (IAT) to form the DAtt and obtain the emotional features of the target words and reviews. DGAT models the dependency of the TRG by aggregating the semantic information. Next, the target emotional enhancement features obtained by the DGAT are input to the IAT. The influence of each target word on the review can be obtained through the interaction. Finally, the target emotional enhancement features are weighted by the impact factor to generate the review's emotional features. In this study, extensive experiments were conducted on the car and Meituan review data sets, which contain consumer reviews on cars and stores, respectively. The results demonstrate that the proposed model outperforms the existing models.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-28
Author(s):  
Yan Tang ◽  
Weilong Cui ◽  
Jianwen Su

A business process (workflow) is an assembly of tasks to accomplish a business goal. Real-world workflow models often demanded to change due to new laws and policies, changes in the environment, and so on. To understand the inner workings of a business process to facilitate changes, workflow logs have the potential to enable inspecting, monitoring, diagnosing, analyzing, and improving the design of a complex workflow. Querying workflow logs, however, is still mostly an ad hoc practice by workflow managers. In this article, we focus on the problem of querying workflow log concerning both control flow and dataflow properties. We develop a query language based on “incident patterns” to allow the user to directly query workflow logs instead of having to transform such queries into database operations. We provide the formal semantics and a query evaluation algorithm of our language. By deriving an accurate cost model, we develop an optimization mechanism to accelerate query evaluation. Our experiment results demonstrate the effectiveness of the optimization and achieves up to 50× speedup over an adaption of existing evaluation method.


Sign in / Sign up

Export Citation Format

Share Document