scholarly journals Note on the spread of real symmetric matrices with entries in fixed interval

Author(s):  
Iwo Biborski
1969 ◽  
Vol 12 (1) ◽  
pp. 199-209 ◽  
Author(s):  
David A. Nelson ◽  
Frank M. Lassman ◽  
Richard L. Hoel

Averaged auditory evoked responses to 1000-Hz 20-msec tone bursts were obtained from normal-hearing adults under two different intersignal interval schedules: (1) a fixed-interval schedule with 2-sec intersignal intervals, and (2) a variable-interval schedule of intersignal intervals ranging randomly from 1.0 sec to 4.5 sec with a mean of 2 sec. Peak-to-peak amplitudes (N 1 — P 2 ) as well as latencies of components P 1 , N 1 , P 2 , and N 2 were compared under the two different conditions of intersignal interval. No consistent or significant differences between variable- and fixed-interval schedules were found in the averaged responses to signals of either 20 dB SL or 50 dB SL. Neither were there significant schedule differences when 35 or 70 epochs were averaged per response. There were, however, significant effects due to signal amplitude and to the number of epochs averaged per response. Response amplitude increased and response latency decreased with sensation level of the tone burst.


1972 ◽  
Vol 33 (2) ◽  
pp. 311-324 ◽  
Author(s):  
Edward Gottheil ◽  
Lacey O. Corbett ◽  
Joseph C. Grasberger ◽  
Floyd S. Cornelison

1996 ◽  
Vol 11 (31) ◽  
pp. 2531-2537 ◽  
Author(s):  
TATSUO KOBAYASHI ◽  
ZHI-ZHONG XING
Keyword(s):  

We study the Kielanowski parametrization of the Kobayashi-Maskawa (KM) matrix V. A new two-angle parametrization is investigated explicitly and compared with the Kielanowski ansatz. Both of them are symmetric matrices and lead to |V13/V23|=0.129. Necessary corrections to the off-diagonal symmetry of V are also discussed.


2021 ◽  
Vol 618 ◽  
pp. 76-96
Author(s):  
M.A. Duffner ◽  
A.E. Guterman ◽  
I.A. Spiridonov
Keyword(s):  

2019 ◽  
Vol 7 (1) ◽  
pp. 257-262
Author(s):  
Kenji Toyonaga

Abstract Given a combinatorially symmetric matrix A whose graph is a tree T and its eigenvalues, edges in T can be classified in four categories, based upon the change in geometric multiplicity of a particular eigenvalue, when the edge is removed. We investigate a necessary and sufficient condition for each classification of edges. We have similar results as the case for real symmetric matrices whose graph is a tree. We show that a g-2-Parter edge, a g-Parter edge and a g-downer edge are located separately from each other in a tree, and there is a g-neutral edge between them. Furthermore, we show that the distance between a g-downer edge and a g-2-Parter edge or a g-Parter edge is at least 2 in a tree. Lastly we give a combinatorially symmetric matrix whose graph contains all types of edges.


Sign in / Sign up

Export Citation Format

Share Document