Tracking plumbing system dynamics at the Campi Flegrei caldera, Italy: High-resolution trace element mapping of the Astroni crystal cargo

Lithos ◽  
2018 ◽  
Vol 318-319 ◽  
pp. 464-477 ◽  
Author(s):  
Rebecca L. Astbury ◽  
Maurizio Petrelli ◽  
Teresa Ubide ◽  
Michael J. Stock ◽  
Ilenia Arienzo ◽  
...  
2021 ◽  
Author(s):  
Matthijs Smit ◽  
Carl Guilmette ◽  
Melanie Kielman-Schmitt ◽  
Ellen Kooijman ◽  
Erik Scherer ◽  
...  

2021 ◽  
Author(s):  
Camilla Marino ◽  
Luigi Ferranti ◽  
Jacopo Natale ◽  
Marco Sacchi ◽  
Marco Anzidei

<p>Appraisal of morphodepositional markers tied to ancient sea-levels in high-resolution seismic profiles together with geo-archaeological markers along the coast of the Pozzuoli Bay provided insights into the vertical deformation of the submerged part of the Campi Flegrei caldera (Southern Italy).</p><p>The collapse of the central part of the Campi Flegrei caldera is associated with the eruption of the Neapolitan Yellow Tuff (NYT) at ~15 ka. The NYT caldera collapse was followed by central dome resurgence associated with alternations of fast uplift and subsidence displacements that accompanied with discrete phases of intra-caldera volcanic activity. Previously, the evolution of ground movement in the Campi Flegrei caldera has been reconstructed using marine deposits uplifted onland or archaeological evidence and historical accounts and thus offers a mainly 2D appraisal of the deformation pattern. However, a complete reconstruction of post-collapse deformation suffers of the limitation that nearly two-thirds of the caldera are submerged beneath the Pozzuoli Bay.</p><p>We contribute to fill this gap by providing a reconstruction of offshore and coastal deformation through estimation of the vertical displacement of morphodepositional markers in high-resolution seismic reflection profiles and geoarchaeological markers directly surveyed at shallow depths. Our interpretation reveals the occurrence of different sediment stacking pattern whose provides evidence of rapid and oscillating ground movements. Whereas the offshore morphodepositional markers provide displacement information for the last ~12 ka, for the last ~2 ka our interpretation is supported by ancient Roman sea-level indicators. The multi-dataset analysis has allowed disentangling the signal related to the post-caldera dynamics from a broader deformation signal that affects this part of the extensional margin of the Apennines.</p><p>The integration of offshore data in the study of past episodes of ground deformation, by yielding a more complete picture of the ground motions associated to the post-collapse evolution of the Campi Flegrei caldera, bears a significant contribution for a 3D reconstruction of this high-risk resurgence caldera. Besides, the multidisciplinary approach presented here can be relevant for investigations of other calderas spanning the sea-land transition.</p>


Author(s):  
Daniela Rubatto ◽  
Marcel Burger ◽  
Pierre Lanari ◽  
Bodo Hattendorf ◽  
Gunnar Schwarz ◽  
...  

2008 ◽  
Vol 40 (6-7) ◽  
pp. 1042-1045 ◽  
Author(s):  
S. Matsuyama ◽  
H. Mimura ◽  
K. Katagishi ◽  
H. Yumoto ◽  
S. Handa ◽  
...  

2015 ◽  
Vol 409 ◽  
pp. 157-168 ◽  
Author(s):  
Teresa Ubide ◽  
Cora A. McKenna ◽  
David M. Chew ◽  
Balz S. Kamber

Author(s):  
Pim Kaskes ◽  
Thomas Déhais ◽  
Sietze J. de Graaff ◽  
Steven Goderis ◽  
Philippe Claeys

ABSTRACT Quantitative insights into the geochemistry and petrology of proximal impactites are fundamental to understand the complex processes that affected target lithologies during and after hypervelocity impact events. Traditional analytical techniques used to obtain major- and trace-element data sets focus predominantly on either destructive whole-rock analysis or laboratory-intensive phase-specific micro-analysis. Here, we present micro–X-ray fluorescence (µXRF) as a state-of-the-art, time-efficient, and nondestructive alternative for major- and trace-element analysis for both small and large samples (up to 20 cm wide) of proximal impactites. We applied µXRF element mapping on 44 samples from the Chicxulub, Popigai, and Ries impact structures, including impact breccias, impact melt rocks, and shocked target lithologies. The µXRF mapping required limited to no sample preparation and rapidly generated high-resolution major- and trace-element maps (~1 h for 8 cm2, with a spatial resolution of 25 µm). These chemical distribution maps can be used as qualitative multi-element maps, as semiquantitative single-element heat maps, and as a basis for a novel image analysis workflow quantifying the modal abundance, size, shape, and degree of sorting of segmented components. The standardless fundamental parameters method was used to quantify the µXRF maps, and the results were compared with bulk powder techniques. Concentrations of most major elements (Na2O–CaO) were found to be accurate within 10% for thick sections. Overall, we demonstrate that µXRF is more than only a screening tool for heterogeneous impactites, because it rapidly produces bulk and phase-specific geochemical data sets that are suitable for various applications within the earth sciences.


Sign in / Sign up

Export Citation Format

Share Document