Corrigendum to ‘Ediacaran - Earliest Cambrian arc-tholeiite and adakite associations of the Malcocinado Formation (Ossa-Morena Zone, SW Spain): juvenile continental crust and deep crustal reworking in northern Gondwana’. [Lithos 372–373 (2020) 105683]

Lithos ◽  
2020 ◽  
Vol 376-377 ◽  
pp. 105765
Author(s):  
F. Sarrionandia ◽  
B. Ábalos ◽  
J. Errandonea-Martin ◽  
L. Eguíluz ◽  
J.F. Santos-Zalduegui ◽  
...  
Lithos ◽  
2020 ◽  
Vol 372-373 ◽  
pp. 105683
Author(s):  
F. Sarrionandia ◽  
B. Ábalos ◽  
J. Errandonea-Martin ◽  
L. Eguíluz ◽  
J.F. Santos-Zalduegui ◽  
...  

Lithosphere ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 488-506
Author(s):  
Xing-Hua Ma ◽  
Shi-Lei Qiao ◽  
Peng Xiang ◽  
Andrei V. Grebennikov ◽  
Renjie Zhou

AbstractConvergent plate boundaries are the primary location for the formation of continental crust by the intrusion of arc batholiths that contain essentially mantle-derived magmas. This paper presents two types of arc granitoids (enclave-free monzogranites and enclave-bearing granodiorites) in northeastern (NE) China to understand crustal evolution and growth in the eastern Asian continental margin. The monzogranites (189 Ma) show characteristics typical of upper continental crust, with high SiO2 contents and enrichment of K, Rb, and Pb. These monzogranites have low ISr (87Sr/86Sr) ratios (0.70378–0.70413) and positive εNd (t) (+2.2 to +2.3) and εHf (t) (+7.3 to +10.2) values. These features, combined with high zircon saturation temperatures (TZr > 800 °C), suggest that the monzogranites were generated by the heat-fluxed melting of juvenile lower crust. In contrast, the granodiorites (171 Ma) contain abundant coeval mafic enclaves and show relatively low silica contents, low TZr (748–799 °C), and particularly wide variation in εHf (t) (−3.5 to +5.6), implying a hybrid origin involving both mantle- and crust-derived components. Isotopic modeling indicates that mantle material accounts for around 60%–70% of the hybrid magmas by volume. The granodiorites have adakite-like signatures (e.g., Sr/Y > 21 and [La/Yb]N > 15), which may have been primarily caused by a process of magma mixing and hornblende-dominated fractional fractionation, rather than through melting of a subducting slab or thickened lower crust. The two distinct granitoids (monzogranites and granodiorites) represent continental crustal reworking and growth, respectively, related to the subduction of the Paleo-Pacific Plate beneath the eastern Asian continental margin during the Jurassic.


2017 ◽  
Vol 8 (2) ◽  
pp. 355-385 ◽  
Author(s):  
Tsuyoshi Komiya ◽  
Shinji Yamamoto ◽  
Shogo Aoki ◽  
Keiko Koshida ◽  
Masanori Shimojo ◽  
...  

2019 ◽  
Vol 132 (3-4) ◽  
pp. 817-834 ◽  
Author(s):  
Yilong Li ◽  
Jianping Zheng ◽  
Wenjiao Xiao ◽  
Guoqing Wang ◽  
Fraukje M. Brouwer

Abstract The Neoarchean crust-mantle interaction and crustal evolution of the North China craton are controversial and are instructive of the processes of continental crust growth and cratonic evolution. We present here a systematic study of the petrology, geochemistry, and geochronology of Neoarchean granitoids from the eastern North China craton to elucidate their petrogenesis and tectonic setting. The rocks were collected from the Jielingkou, Anziling, and Qinhuangdao plutons, and an amphibole-monzoporphyry dike in the Qinhuangdao pluton. Samples from the Jielingkou pluton, consisting dominantly of monzodiorite and diorite with minor monzonite and granodiorite, contain 52.2–64.4 wt% SiO2, 2.46–4.52 wt% MgO (Mg# = 0.41–0.54), 3.76–5.77 wt% Na2O, and K2O/Na2O ratios of 0.29–0.71. The Anziling pluton samples, comprising syenite and monzonite, display slightly higher SiO2 (60.9–66.7 wt%) and K2O/Na2O ratios (0.70–1.11), but lower MgO (1.54–2.33 wt%) and Mg# (0.40–0.47) values, compared to the Jielingkou rocks. The Qinhuangdao pluton samples, consisting mainly of granite and minor syenite and granodiorite, with some diorite and monzoporphyry dikes, are characterized by the highest SiO2 values (75.7–76.9 wt%) and K2O/Na2O ratios (0.73–1.41) and lowest MgO content (0.14–0.32 wt%) among the studied samples. The amphibole-monzoporphyry dike has intermediate SiO2 (56.3 wt%), high MgO (3.79 wt%), Na2O (5.55 wt%), and Mg# (0.45), and low K2O/Na2O ratio (0.66). Zircon U-Pb laser-ablation–inductively coupled plasma–mass spectrometry dating showed that all plutons have a ca. 2.5 Ga crystallization age. Zircon crystals have mildly positive εHf(t) values (+0.24 to +5.45) and a depleted mantle model age (TDM1) of ca. 2.7 Ga. We interpret the granitoid rocks as sanukitoid-related, Closepet-type granites, potassium-rich adakites, and potassium-rich granitoid rocks that crystallized in the late Neoarchean (2.5 Ga) and were derived from partial melting of mantle peridotite that was metasomatized with the addition of slab melt, thickened alkali-rich juvenile lower crust and juvenile metamorphosed tonalitic rocks. Mantle plume activity ca. 2.7 Ga is thought to have been responsible for the early Neoarchean tectono-thermal event in the eastern North China craton. This activity resulted in a major crustal accretion period in the craton, with subordinate crustal reworking at its margins. A steep subduction regime between ca. 2.55 Ga and ca. 2.48 Ga led to the remelting of older crustal material, with subordinate crustal accretion by magma upwelling from a depleted mantle source resulting in late Neoarchean underplating. This crustal reworking and underplating resulted in the widespread ca. 2.5 Ga plutons in the eastern North China craton. Continental crust growth in the North China craton thus occurred in multiple stages, in response to mantle plume activity, as well as protracted subduction-related granitoid magmatism during the Neoarchean.


Sign in / Sign up

Export Citation Format

Share Document