depleted mantle
Recently Published Documents


TOTAL DOCUMENTS

331
(FIVE YEARS 121)

H-INDEX

47
(FIVE YEARS 7)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Olga Kiseleva ◽  
Pavel Serov ◽  
Evgenia Airiyants ◽  
Aleksey Travin ◽  
Dmitriy Belyanin ◽  
...  

We report the first radiogenic Nd-Sr isotope data in the magmatic rocks island-arc ophiolite assemblage from the middle branch of the East Sayan ophiolite complexes to better constrain geodynamic processes in this segment of the CAOB in southern central Siberia. The magmatic rocks belong to the following geochemical types: (1) Ensimatic island-arc boninites; (2) island-arc assemblage; (3) enriched basalts of mid-ocean ridges; and (4) oceanic island-like basalts. The boninites have a positive value εNd (T), which is generated from a depleted mantle source (N-MORB). The island-arc assemblage has negative or slightly positive εNd (T) and was formed from an enriched mantle source due to the subduction of terrigenous rocks. The source of the terrigenous material was most likely the rocks of the Archean TTG (Trondhjemite Tonalite Granodiorite) complex of the Gargan block. Isotopic ratios for E-MOR and OIB-like basalts are characterized by positive or slightly negative values of εNd (T). The mafic dike, which crosscut ophiolite rocks, corresponds to OIB-like basalts. The values of εNd (T), measured 87Sr/86Sr and I (Sr), in the mafic dike correspond to the EM I mantle source. The E-MOR and OIB-like basalts appear to be formed in late-stage asthenospheric mantle melting via the decompression melting processes. The obtained isotope geochemical data for the E-MOR and OIB-like basalts probably indicate the mixing of island-arc melts with asthenospheric melts. We undertook 40Ar/39Ar dating of the mafic dike, which crosscut the ophiolite unit. The mafic dike has a whole-rock 40Ar/39Ar weighted mean plateau age of 799 ± 11 Ma. The dating constrains the minimum age of the ophiolite and island-arc magmatism in the region.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Pavel Kepezhinskas ◽  
Nikolai Berdnikov ◽  
Nikita Kepezhinskas ◽  
Natalia Konovalova

Adakites are Y- and Yb-depleted, SiO2- and Sr-enriched rocks with elevated Sr/Y and La/Yb ratios originally thought to represent partial melts of subducted metabasalt, based on their association with the subduction of young (<25 Ma) and hot oceanic crust. Later, adakites were found in arc segments associated with oblique, slow and flat subduction, arc–transform intersections, collision zones and post-collisional extensional environments. New models of adakite petrogenesis include the melting of thickened and delaminated mafic lower crust, basalt underplating of the continental crust and high-pressure fractionation (amphibole ± garnet) of mantle-derived, hydrous mafic melts. In some cases, adakites are associated with Nb-enriched (10 ppm < Nb < 20 ppm) and high-Nb (Nb > 20 ppm) arc basalts in ancient and modern subduction zones (HNBs). Two types of HNBs are recognized on the basis of their geochemistry. Type I HNBs (Kamchatka, Honduras) share N-MORB-like isotopic and OIB-like trace element characteristics and most probably originate from adakite-contaminated mantle sources. Type II HNBs (Sulu arc, Jamaica) display high-field strength element enrichments in respect to island-arc basalts coupled with enriched, OIB-like isotopic signatures, suggesting derivation from asthenospheric mantle sources in arcs. Adakites and, to a lesser extent, HNBs are associated with Cu–Au porphyry and epithermal deposits in Cenozoic magmatic arcs (Kamchatka, Phlippines, Indonesia, Andean margin) and Paleozoic-Mesozoic (Central Asian and Tethyan) collisional orogens. This association is believed to be not just temporal and structural but also genetic due to the hydrous (common presence of amphibole and biotite), highly oxidized (>ΔFMQ > +2) and S-rich (anhydrite in modern Pinatubo and El Chichon adakite eruptions) nature of adakite magmas. Cretaceous adakites from the Stanovoy Suture Zone in Far East Russia contain Cu–Ag–Au and Cu–Zn–Mo–Ag alloys, native Au and Pt, cupriferous Ag in association witn barite and Ag-chloride. Stanovoy adakites also have systematically higher Au contents in comparison with volcanic arc magmas, suggesting that ore-forming hydrothermal fluids responsible for Cu–Au(Mo–Ag) porphyry and epithermal mineralization in upper crustal environments could have been exsolved from metal-saturated, H2O–S–Cl-rich adakite magmas. The interaction between depleted mantle peridotites and metal-rich adakites appears to be capable of producing (under a certain set of conditions) fertile sources for HNB melts connected with some epithermal Au (Porgera) and porphyry Cu–Au–Mo (Tibet, Iran) mineralized systems in modern and ancient subduction zones.


Author(s):  
Bryant Ware ◽  
Kyle P. Tumpane ◽  
Gene A. Kurz ◽  
Mark D. Schmitz ◽  
Clyde J. Northrup

The Olds Ferry terrane is the more inboard of two accreted volcanic arc terranes in the late Paleozoic−early Mesozoic Blue Mountains province of the northern U.S. Cordillera. We present geologic, geochronologic, and geochemical data from the volcano-sedimentary Huntington Formation of the Olds Ferry arc that place the terrane within a firm temporal and tectonomagmatic context, and establish its identity as a fringing arc terrane along the Triassic to Early Jurassic Cordilleran margin. The Huntington Formation is divided into two unconformity-bounded informal members: a Norian (ca. 220 Ma) lower member comprising a sequence of mafic-intermediate volcanics, massive volcaniclastic breccias, and minor carbonates deposited unconformably onto the 237.7 Ma Brownlee pluton and intruded by the 210.0 Ma Iron Mountain pluton; and a Rhaetian through Pleinsbachian (&lt;210−187.0 Ma) upper member composed of massive conglomerates, abundant rhyodacite to rhyolite effusive and pyroclastic flows, and interlayered sandstone turbidites, deposited with angular unconformity onto the lower member. An erosional hiatus and regional tilting produced an angular unconformity separating the Huntington Formation from the overlying basal conglomerates of the late Early to Middle Jurassic Weatherby Formation of the Izee forearc basin transgressive onlap sequence. Huntington Formation volcanic rocks are isotopically enriched relative to depleted mantle and coeval igneous rocks in the outboard Wallowa terrane. A temporal evolution to more radiogenic 87Sr/86Sr ratios (0.7036−0.7057) and εNd values (+5.4 to +3.1) in the upper member volcanics suggests increasing involvement of continental-derived material in their petrogenesis. Precambrian xenocrystic zircons in both lower and upper member volcaniclastic rocks strongly support a proximal location of the Olds Ferry terrane to cratonal North America during much of its history. The chronology and tectonostratigraphic architecture of the Olds Ferry terrane allows its robust correlation to other fringing-arc terranes along the U.S. and Canadian Cordillera.


2021 ◽  
Vol 93 (2) ◽  
pp. 77-104
Author(s):  
Pentti Hölttä ◽  
◽  
Irmeli Mänttäri ◽  
Hannu Huhma ◽  
Matti Kurhila ◽  
...  

U–Pb age determinations on zircon from granitoids in the Archean of eastern Finland were conducted using the SIMS, LA-ICP-MS and TIMS techniques, with an emphasis on low-HREE granitoids. The oldest rocks in the Fennoscandian Shield are 3.4–3.5 Ga. Several samples were collected close to these rocks, but none of the samples were as old, indicating that the oldest rocks are only small, possibly allochthonous fragments in the Neoarchean bedrock. Some tonalite–trondhjemite–granodiorite (TTG) samples yielded homogeneous 2.72–2.73 Ga zircon populations, and in these samples, the initial εNd was also close to the depleted mantle (DM) values. However, several granitoid samples with a main zircon population of 2.7–2.8 Ga had 2.9–3.2 Ga grains or inherited cores, and in some samples, all grains were of 2.9–3.0 Ga. In these samples, the εNd value was also close to zero or slightly negative. These features suggest that apart from the juvenile Neoarchean magmas, the abundance of reworked 2.9 Ga material is considerable in the Archean crust, which developed during successive juvenile magmatic inputs that melted and assimilated the older sialic crust. The low- HREE geochemical character of granitoids has no correlation with their age, with the low-HREE granitoids yielding an age span of 2.72–2.98 Ga.


2021 ◽  
Vol 118 (51) ◽  
pp. e2116083118
Author(s):  
Meng Guo ◽  
Jun Korenaga

Halogens are important tracers of various planetary formation and evolution processes, and an accurate understanding of their abundances in the Earth’s silicate reservoirs can help us reconstruct the history of interactions among mantle, atmosphere, and oceans. The previous studies of halogen abundances in the bulk silicate Earth (BSE) are based on the assumption of constant ratios of element abundances, which is shown to result in a gross underestimation of the BSE halogen budget. Here we present a more robust approach using a log-log linear model. Using this method, we provide an internally consistent estimate of halogen abundances in the depleted mid-ocean ridge basalts (MORB)-source mantle, the enriched ocean island basalts (OIB)-source mantle, the depleted mantle, and BSE. Unlike previous studies, our results suggest that halogens in BSE are not more depleted compared to elements with similar volatility, thereby indicating sufficient halogen retention during planetary accretion. According to halogen abundances in the depleted mantle and BSE, we estimate that ∼87% of all stable halogens reside in the present-day mantle. Given our understanding of the history of mantle degassing and the evolution of crustal recycling, the revised halogen budget suggests that deep halogen cycle is characterized by efficient degassing in the early Earth and subsequent net regassing in the rest of Earth history. Such an evolution of deep halogen cycle presents a major step toward a more comprehensive understanding of ancient ocean alkalinity, which affects carbon partitioning within the hydrosphere, the stability of crustal and authigenic minerals, and the development of early life.


Lithos ◽  
2021 ◽  
pp. 106567
Author(s):  
Inayat Ullah ◽  
Chuandong Xue ◽  
Tiannan Yang ◽  
Zhipeng Xie ◽  
Wei Wang ◽  
...  

2021 ◽  
Vol 54 (2E) ◽  
pp. 24-37
Author(s):  
Sarmad A Ali

The gabbroic rocks as a part of Zagros ophiolite are exposed in northeastern Iraq, Penjwin area. These rocks with granular to ophitic textures are widely distributed without metamorphic halos. The main minerals are plagioclase (An90-99), olivine, clinopyroxene (Wo27-47 En 45-64 Fs8-14) and orthopyroxene (Wo2 En78 Fs20) respectively based on the abundances. The major elements show a broad range of compositional variations, with SiO2 (46.2–50.9 wt. %), and low concentrations Na2O (0.15–0.62 wt. %), K2O (0.01–0.03 wt. %) and TiO2 (0.06–0.2) and high concentrations, Al2O3 (6.4–19.75 wt. %), total Fe2O3 (6.29–11.6 wt. %), MgO (9.63–24.5 wt. %), CaO (8.02–18 wt. %) and low alkali contents (Na2O + K2O = 0.16–0.65 wt. %). On Ti-V diagram, all of the gabbroic samples have Ti/V less than 10 and consequently fall in the low Ti- Island arc tholeiitic. Whole rocks chemistry shows a depletion of High field strength elements in comparison with the primitive mantle with an arched upward rare earth elements pattern, characterized by light rare earth elements depletion (La N/Sm N = 0.05–0.8) and enrichment in the High field strength elements. Whole rocks chemistry, mineral paragenesis and chemistry of these rocks are more consistent with tholeiitic magma series. Based on our findings in this research, the primary magma has been produced from the depleted mantle with a high degree of partial melting.


2021 ◽  
Author(s):  
◽  
Alexander Zohrab

<p>The Kermadec Arc-Havre Trough (KAHT) is widely regarded as a classical example of an intra-oceanic arc-back-arc system, where subduction-driven arc magmatism is focused at the Kermadec volcanic arc-front, and magmatism within the Havre Trough back-arc system results from decompression-related melting. In detail, however, the Havre Trough has not been well-studied, and data for very few lavas have been reported.  Recent mapping undertaken in the southern Havre Trough has resulted in the discovery of several prominent submarine stratovolcanoes, Gill Seamount, Rapuhia Seamount and the related Rapuhia Ridge, Yokosuka Seamount, and Giljanes Seamount, situated in the middle of deep rifts and on elevated crustal plateaux. The origin and evolution of these stratovolcanoes is unknown. The first detailed dataset of whole rock major and trace element geochemistry, mineral chemistry, and ⁴⁰Ar/³⁹Ar isotope data, for lavas erupted from these volcanoes is presented here, and used to investigate the processes that drive volcanism in the Havre Trough back-arc.  ⁴⁰Ar/³⁹Ar ages obtained from back-arc stratovolcanoes range from ca. 1167 - 953 ka for Gill Seamount, and ca. 107 - 50 ka for Rapuhia Ridge. These ages overlap with known ages for arc-front lavas, indicating that both back-arc and arc-front volcanism are coeval. These ages are all significantly younger than the inferred initation of Havre Trough rifting ca. 5 - 6 Ma.  Lavas analysed from Gill Seamount and Rapuhia Ridge are basaltic to basaltic-andesitic in whole rock composition and contain a phenocryst assemblage of olivine ± orthopyroxene + clinopyroxene ± plagioclase. Lavas from Rapuhia Seamount, Yokosuka Seamount and Giljanes Seamount range from andesitic to dacitic in composition, and have a phenocryst assemblage consisting primarily of plagioclase ± clinopyroxene ± amphibole ± Fe-Ti oxides ± apatite. Variations in mineral assemblages and whole rock compositions of the lavas are consistent with crystal fractionation of their respective phenocryst phases. The more evolved compositions of Rapuhia Seamount, Yokosuka Seamount and Giljanes Seamount, all sited on an elevated crustal plateau, are inferred to result from prolonged assimilation + fractional crystallisation (AFC) in the mid- to upper- crust.  Mineral compositions provide additional evidence for fractional crystallisation, and most crystals are inferred to have crystallised in equilibrium with their host melt. However, compositions of some olivine phenocrysts in Gill Seamount and Rapuhia Ridge indicate multiple populations of olivine, suggesting their magmatic systems were open to contributions from secondary processes. Variations in Or content in plagioclase crystals for a given lava suite suggests the sample suites crystallised from melts with different starting K₂O compositions.  Elevated ratios of Nb/Yb in the mafic Gill Seamount and Rapuhia Ridge lavas indicate the back-arc volcanoes and ridges originated from a less depleted mantle than that present underneath the Kermadec volcanic arc-front, likely a consequence of trenchward advection of mantle within a suprasubduction wedge and/or partial melting of a fusible enriched mantle component.   All whole rock samples from these back-arc volcanoes have trace element characteristics that resemble those of typical volcanic arc magmas, indicating that they are variably modified by subducting plate-derived components despite their rear-arc setting. However, the extent of fluid enrichment is less than that at the Kermadec volcanic arc-front. Elevated REE patterns and (La/Sm)N ratios suggest the subduction-component modifying back-arc volcano magmas is dominated by subducting sediment. This sediment component is not consistent with aqueous fluid transfer or bulk mixing, but by the addition of a sediment-derived partial melt with residual accessory phases monazite + zircon + rutile. HFSE/REE fractionated trace element patterns overlap for unmodified basalts from Gill Seamount and Rapuhia Ridge, and Rumble V Ridge back-arc constructional volcanism to the south. This suggests that a similar mechanism triggers constructional back-arc volcanism at both locations in the southern Havre Trough, likely a consequence of thermal anomalies inferred to be present in the mantle wedge (Todd et al. (2011)).</p>


2021 ◽  
Author(s):  
◽  
Alexander Zohrab

<p>The Kermadec Arc-Havre Trough (KAHT) is widely regarded as a classical example of an intra-oceanic arc-back-arc system, where subduction-driven arc magmatism is focused at the Kermadec volcanic arc-front, and magmatism within the Havre Trough back-arc system results from decompression-related melting. In detail, however, the Havre Trough has not been well-studied, and data for very few lavas have been reported.  Recent mapping undertaken in the southern Havre Trough has resulted in the discovery of several prominent submarine stratovolcanoes, Gill Seamount, Rapuhia Seamount and the related Rapuhia Ridge, Yokosuka Seamount, and Giljanes Seamount, situated in the middle of deep rifts and on elevated crustal plateaux. The origin and evolution of these stratovolcanoes is unknown. The first detailed dataset of whole rock major and trace element geochemistry, mineral chemistry, and ⁴⁰Ar/³⁹Ar isotope data, for lavas erupted from these volcanoes is presented here, and used to investigate the processes that drive volcanism in the Havre Trough back-arc.  ⁴⁰Ar/³⁹Ar ages obtained from back-arc stratovolcanoes range from ca. 1167 - 953 ka for Gill Seamount, and ca. 107 - 50 ka for Rapuhia Ridge. These ages overlap with known ages for arc-front lavas, indicating that both back-arc and arc-front volcanism are coeval. These ages are all significantly younger than the inferred initation of Havre Trough rifting ca. 5 - 6 Ma.  Lavas analysed from Gill Seamount and Rapuhia Ridge are basaltic to basaltic-andesitic in whole rock composition and contain a phenocryst assemblage of olivine ± orthopyroxene + clinopyroxene ± plagioclase. Lavas from Rapuhia Seamount, Yokosuka Seamount and Giljanes Seamount range from andesitic to dacitic in composition, and have a phenocryst assemblage consisting primarily of plagioclase ± clinopyroxene ± amphibole ± Fe-Ti oxides ± apatite. Variations in mineral assemblages and whole rock compositions of the lavas are consistent with crystal fractionation of their respective phenocryst phases. The more evolved compositions of Rapuhia Seamount, Yokosuka Seamount and Giljanes Seamount, all sited on an elevated crustal plateau, are inferred to result from prolonged assimilation + fractional crystallisation (AFC) in the mid- to upper- crust.  Mineral compositions provide additional evidence for fractional crystallisation, and most crystals are inferred to have crystallised in equilibrium with their host melt. However, compositions of some olivine phenocrysts in Gill Seamount and Rapuhia Ridge indicate multiple populations of olivine, suggesting their magmatic systems were open to contributions from secondary processes. Variations in Or content in plagioclase crystals for a given lava suite suggests the sample suites crystallised from melts with different starting K₂O compositions.  Elevated ratios of Nb/Yb in the mafic Gill Seamount and Rapuhia Ridge lavas indicate the back-arc volcanoes and ridges originated from a less depleted mantle than that present underneath the Kermadec volcanic arc-front, likely a consequence of trenchward advection of mantle within a suprasubduction wedge and/or partial melting of a fusible enriched mantle component.   All whole rock samples from these back-arc volcanoes have trace element characteristics that resemble those of typical volcanic arc magmas, indicating that they are variably modified by subducting plate-derived components despite their rear-arc setting. However, the extent of fluid enrichment is less than that at the Kermadec volcanic arc-front. Elevated REE patterns and (La/Sm)N ratios suggest the subduction-component modifying back-arc volcano magmas is dominated by subducting sediment. This sediment component is not consistent with aqueous fluid transfer or bulk mixing, but by the addition of a sediment-derived partial melt with residual accessory phases monazite + zircon + rutile. HFSE/REE fractionated trace element patterns overlap for unmodified basalts from Gill Seamount and Rapuhia Ridge, and Rumble V Ridge back-arc constructional volcanism to the south. This suggests that a similar mechanism triggers constructional back-arc volcanism at both locations in the southern Havre Trough, likely a consequence of thermal anomalies inferred to be present in the mantle wedge (Todd et al. (2011)).</p>


Geology ◽  
2021 ◽  
Author(s):  
Hepeng Tian ◽  
Majie Fan ◽  
Victor A. Valencia ◽  
Kevin Chamberlain ◽  
Robert J. Stern ◽  
...  

A Paleozoic arc that formed by southward subduction of the Rheic oceanic plate beneath northern Gondwana has long been inferred, but its history and geochemical signatures remain poorly understood. New U-Pb ages, juvenile εHf signatures, and trace-element composition data of young zircons from tuffs at two southern Laurentia sites indicate their derivation from a continental arc that was active from ca. 328 to ca. 317 Ma and permit correlation of sedimentary sequences 800 km apart in southern Laurentia. These include the Stanley tuffs in the Ouachita Mountains of southeastern Oklahoma and southwestern Arkansas and the newly discovered Barnett tuff in the subsurface of the Midland Basin in west Texas (USA). The Barnett tuff has a zircon chemical abrasion–isotope dilution–thermal ionization mass spectrometry U-Pb date of 327.8 ± 0.8 Ma, similar to the oldest Stanley tuff in the Ouachita Mountains. Zircon Hf isotope depleted mantle model ages further suggest that the source was a continental arc on basement with both Grenville and Pan-African affinities, pointing to northern Gondwana or peri-Gondwana terranes. The new data link the tuffs to granitoids (326 Ma) of the Maya block in southern Mexico, which was part of northern Gondwana. Correlation of the Stanley-Barnett tuffs across southern Laurentia suggests the likely presence of Mississippian tuffs over a broad region in southern Laurentia, and their usefulness for constraining absolute ages of basin fills and characterizing the Gondwanan arc.


Sign in / Sign up

Export Citation Format

Share Document