crustal accretion
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 38)

H-INDEX

42
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John M. O’Connor ◽  
Wilfried Jokat ◽  
Peter J. Michael ◽  
Mechita C. Schmidt-Aursch ◽  
Daniel P. Miggins ◽  
...  

AbstractDespite progress in understanding seafloor accretion at ultraslow spreading ridges, the ultimate driving force is still unknown. Here we use 40Ar/39Ar isotopic dating of mid-ocean ridge basalts recovered at variable distances from the axis of the Gakkel Ridge to provide new constraints on the spatial and temporal distribution of volcanic eruptions at various sections of an ultraslow spreading ridge. Our age data show that magmatic-dominated sections of the Gakkel Ridge spread at a steady rate of ~11.1 ± 0.9 mm/yr whereas amagmatic sections have a more widely distributed melt supply yielding ambiguous spreading rate information. These variations in spreading rate and crustal accretion correlate with locations of hotter thermochemical anomalies in the asthenosphere beneath the ridge. We conclude therefore that seafloor generation in ultra-slow spreading centres broadly reflects the distribution of thermochemical anomalies in the upper mantle.


2021 ◽  
pp. 105470
Author(s):  
Paolo Mancinelli ◽  
Vittorio Scisciani ◽  
Cristina Pauselli ◽  
Gérard M. Stampfli ◽  
Fabio Speranza ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Wu ◽  
Maurice A. Tivey ◽  
Chunhui Tao ◽  
Jinhui Zhang ◽  
Fei Zhou ◽  
...  

AbstractMagmatic and tectonic processes can contribute to discontinuous crustal accretion and play an important role in hydrothermal circulation at ultraslow-spreading ridges, however, it is difficult to accurately describe the processes without an age framework to constrain crustal evolution. Here we report on a multi-scale magnetic survey that provides constraints on the fine-scale evolution of a detachment faulting system that hosts hydrothermal activity at 49.7°E on the Southwest Indian Ridge. Reconstruction of the multi-stage detachment faulting history shows a previous episode of detachment faulting took place 0.76~1.48 My BP, while the present fault has been active for the past ~0.33 My and is just in the prime of life. This fault sustains hydrothermal circulation that has the potential for developing a large sulfide deposit. High resolution multiscale magnetics allows us to constrain the relative balance between periods of detachment faulting and magmatism to better describe accretionary processes on an ultraslow spreading ridge.


2021 ◽  
Author(s):  
Suoya Fan ◽  
Michael Murphy ◽  
David Michael Whipp ◽  
Joel Edward Saylor ◽  
Peter Copeland ◽  
...  

Geosphere ◽  
2021 ◽  
Author(s):  
Jonathan D. Sleeper ◽  
Fernando Martinez ◽  
Patricia Fryer ◽  
Robert J. Stern ◽  
Katherine A. Kelley ◽  
...  

South of the latitude of Guam, the Mariana Trough exhibits both trench-parallel and trench-normal extension. In this study, we examined the locus of trench-normal extension separating the Philippine Sea plate from the broadly deforming Mariana platelet. Along this boundary, we identified three distinct modes of extension and described their distinguishing characteristics using deep- and shallow-towed side-scan sonar and ship multibeam data along with regional geophysical, geochemical, and seismicity data. In the west, the Southwest Mariana Rift is an active tectonic rift exhibiting abundant strong earthquakes up to mb 6.7 and limited evidence of volcanism. In the east, the Malaguana-Gadao Ridge is a seafloor spreading center producing few and weak earthquakes less than mb 5. Between these zones, there is an ~20–40-km-wide and ~120-km-long area of high acoustic backscatter characterized by closely spaced volcano- tectonic ridges and small volcanic cones with distributed intermediate-strength seismicity up to mb 5.7. Fresh-looking volcanic rocks with high water contents and strong arc chemical affinities have been recovered from the high-backscatter zone. We interpret this morphologically and geophysically distinct zone as undergoing diffuse spreading, a distributed form of magmatic crustal accretion where new crust forms within a broad zone tens of kilometers across rather than along a narrow spreading axis. Diffuse spreading appears to be a rheological threshold effect enabled by slow opening rates and a high slab-fluid flux that facilitate the formation of a broad zone of weak hydrous lithosphere, within which new crust is accreted. Our findings describe a poorly understood process in plate tectonics, and observations of similar terrains in other backarc basins suggest that this process is not unique to the Mariana Trough.


2021 ◽  
Vol 176 (7) ◽  
Author(s):  
M. U. Gress ◽  
S. Timmerman ◽  
I. L. Chinn ◽  
J. M. Koornneef ◽  
E. Thomassot ◽  
...  

AbstractThe Sm–Nd isotope systematics and geochemistry of eclogitic, websteritic and peridotitic garnet and clinopyroxene inclusions together with characteristics of their corresponding diamond hosts are presented for the Letlhakane mine, Botswana. These data are supplemented with new inclusion data from the nearby (20–30 km) Orapa and Damtshaa mines to evaluate the nature and scale of diamond-forming processes beneath the NW part of the Kalahari Craton and to provide insight into the evolution of the deep carbon cycle. The Sm–Nd isotope compositions of the diamond inclusions indicate five well-defined, discrete eclogitic and websteritic diamond-forming events in the Orapa kimberlite cluster at 220 ± 80 Ma, 746 ± 100 Ma, 1110 ± 64 Ma, 1698 ± 280 Ma and 2341 ± 21 Ma. In addition, two poorly constrained events suggest ancient eclogitic (> 2700 Ma) and recent eclogitic and websteritic diamond formation (< 140 Ma). Together with sub-calcic garnets from two harzburgitic diamonds that have Archaean Nd mantle model ages (TCHUR) between 2.86 and 3.38 Ga, the diamonds studied here span almost the entire temporal evolution of the SCLM of the Kalahari Craton. The new data demonstrate, for the first time, that diamond formation occurs simultaneously and episodically in different parageneses, reflecting metasomatism of the compositionally heterogeneous SCLM beneath the area (~ 200 km2). Diamond formation can be directly related to major tectono-magmatic events that impacted the Kalahari Craton such as crustal accretion, continental breakup and large igneous provinces. Compositions of dated inclusions, in combination with marked variations in the carbon and nitrogen isotope compositions of the host diamonds, record mixing arrays between a minimum of three components (A: peridotitic mantle; B: eclogites dominated by mafic material; C: eclogites that include recycled sedimentary material). Diamond formation appears dominated by local fluid–rock interactions involving different protoliths in the SCLM. Redistribution of carbon during fluid–rock interactions generally masks any potential temporal changes of the deep carbon cycle.


Sign in / Sign up

Export Citation Format

Share Document